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Abstract: Using the Fourier modal method, we study the enhanced trans-
mission exhibited by arrays of square coaxial apertures in ametallic film.
The calculated transmission spectrum is in good agreement with FDTD
calculations. We show that the enhanced transmission can beexplained
when we consider a few guided modes of a coaxial waveguide.
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1. Introduction

Nowadays, opticians are greatly interested in structures that exhibit anomalous effects, because
they have potential applications in novel photonic devices. The extraordinary enhanced trans-
mission by subwavelength metallic hole arrays is one such phenomenon. Since the publication
of by Ebbesenet al.,1 many experimental and theoretical studies were carried outin order to
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determine the physical origin of the observed enhanced transmission. Three kinds of explana-
tions have been proposed since, relating the enhanced transmission to the excitation of surface
plasmons,2,3 to a Fabry-Ṕerot cavity behavior of the holes,4,5 or explaining the transmission in
terms of dynamical6,7 diffraction. It is now established that both horizontal andvertical reso-
nances play a role8 in the extraordinary transmission. It is then of importanceto characterize
and to understand the electromagnetic behavior of the channel through which the light propa-
gates inside the metallic film.10 Recently, numerical simulations have shown that a transmission
as high as 80% can be obtained with anular11 apertures. The aim of the present communication
is to study the spectral response of metallic films with a square coaxial aperture. Those struc-
tures are similar to the above-mentioned ones from the electromagnetic point of view. Since
the aperture dimensions are of the order of magnitude of the wavelength, a rigorous electro-
magnetic theory is necessary to analyze the behavior of suchstructures. Although the FDTD
method allows us to calculate rigorously the reflection and transmission of a plane wave by
a periodical structure in the resonance domain, the Fouriermodal method gives a more phys-
ical insight in the present resonant phenomenon.12 The diffraction problem is reduced to the
searching of eigenvalues and eigenvectors of a particular matrix. It permits us to calculate the
effective index of the modes of the coaxial aperture and the coupling of these modes with the
reflected and transmitted order.

2. Statement of the problem

Let us consider a metallic film deposed on a glass substrate with an engraved periodic structure
of square coaxial apertures (see Fig. 1).

Fig. 1. Coaxial square aperture in a metallic film.

The refractive index of the metal is described by a simple free-electron Drude model with a
plasma frequencyωp = 1.374×1016 s−1and a relaxation timeτ = 0.3×10−14 s. The periods
aredx in the x direction anddy in the y direction. The width and the position of an aperture
are controlled by two parametersw1 andw2 (see Fig. 1). Finally, the thickness is denoted byh.
The structure is illuminated in vacuum, under normal incidence, by a monochromatic linearly
polarized plane wave, with a wavelengthλ , a wavenumberk = 2π/λ , and a time dependence
exp(iωt). Our goal is to calculate and to understand the reflection andtransmission spectra of
this structure with the help of the Fourier modal method. In the layer, any componentF of the
electric or magnetic field can indeed be expressed as a superposition of eigenmodes:

F(x,y,z) = ∑
mnq

(

A+
q exp(−ikγqz)+A−

q exp(ikγq(z−h))
)

Fmnqemn(x,y)
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with

emn(x,y) = exp

(

−i
2mπx

dx

)

exp

(

−i
2nπy

dy

)

wherem andn are integers such that−M ≤ m≤ M and−N ≤ n ≤ N. The integersM and
N describe the truncation scheme. The matrix from which eigenvalues and eigenvectors are
calculated is then of rank 2(2M +1)(2N+1). A+

q andA−
q are the unknown complex amplitudes

of the upward and downward propagating or decaying waves. Our numerical code includes
the correct factorization rules derived by Li,9 our personal parametric formulation, and the S
matrix approach for writing the boundary conditions. It should be emphasized that the above-
mentioned numerical tools are of great importance for obtaining reliable and converged results,
although this point is beyond the scope of our paper. To compare the Fourier modal method
and the FDTD that was used by Baida and Van Labeke,11 we have calculated the transmission
spectrum of a structure with the following parameters:w1 = 105nm, w2 = 155nm, dx = dy =
300nm, h = 150nm, ns = 1.45.
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Fig. 2. Transmission of a square coaxial aperture calculated with the FDTD (blue curve)
and the Fourier modal method (red curve).

It can be seen that both methods give resonances at the same place even though a small
difference is observed in their intensity.

3. Discussion

3.1. Analysis of the mode

Our goal is to analyze the enhanced transmission by using theguided modes of the coaxial
apertures. Since we consider a metallic medium, an apertureis not coupled with its neighbors.
A mode for the entire structure thus corresponds exactly to amode of a sole aperture, and thus
no distinction is made in this discussion between them. Indeed, the eigenvalues and the fields
inside the apertures corresponding to an eigenmode do not change when the distance between
holes varies. As a consequence, the eigenvaluesγq give an immediate access to the effective
index for each guided mode.

Because of the metal, all the propagating constants are complex but some of them can be
considered as guided modes with low losses. For the considered structure we have found that
there were three such modes, two of them being degenerated asa result of the square symmetry.
The numerically obtained dispersion relations are plottedin Figs. 3 and 4.
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Fig. 3. Dispersion curves of the first mode. Blue curve, real part; red curve, imaginary part.
The presence of dips is probably due to the right angle corners.
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Fig. 4. Dispersion curves of the second mode. Blue curve, real part;red curve, imaginary
part.

Figures 5 and 6 show a map of the modulus of the transverse electric field of the first and the
second modes.

Fig. 5. Modulus of the transverse electric field of the first guided mode.
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Fig. 6. Modulus of the transverse electric field of the second guided mode.

The mode whose effective index has the largest real part and the lowest imaginary part cor-
responds to the TEM mode of the same coaxial structure with perfect conducting walls. This
mode is characterized by an electric field normal to the wallsand has no cut-off. In the present
case, it is not strictly speaking a TEM mode since its effective index is greater than one. How-
ever, when the width of the aperture becomes larger, the coupling between the opposite sides
of the coaxial waveguide diminishes resulting in a lower effective index. The two other guided
modes have a cut-off∼λ = 845nm.

3.2. Analysis of the coupling of the modes to free radiation

We have shown the existence of attenuated guided modes. In the present section we are inter-
ested in the way they can be excited by an incident plane wave.The S matrix approach is a very
appropriate tool for such an analysis. Let us consider the particular wavelengthλ = 558 nm
where a resonance occurs. Figures 7 and 8 show the 21st calculated modal coefficients corre-
sponding to the upward and downward waves inside the aperture when the film is illuminated
by anx-polarized plane wave under normal incidence.
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Fig. 7. Twenty-first modal amplitude coefficients inside the coaxial on theupper face. The
red bar corresponds to an attenuated guided wave.

For convenience, sorting is displayed in decreasing order.To obtain some physical informa-
tion from this spectrum analysis, we have carefully normalized all the eigenvectors. It should be
noted that the above coefficients are calculated on the interface where the corresponding wave
has been excited. By considering the eigenvalues, i.e., thenormalized propagating constants,
one can easily deduce which kind of mode is excited. Figure 9 represents the location in the
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Fig. 8. Twenty-first modal amplitude coefficients inside the coaxial on thelower face. The
red bar corresponds to an attenuated guided wave.

complex plane of the propagating constant associated to themodal amplitude of Fig. 7. In Fig.
7, the first and the third modes are a degenerated mode whose the imaginary part of the effec-
tive index is as high as 22.8. In the present case, we can conclude that the mode responsible
for the resonant transmission is the attenuated guided modethat matches the polarization of the
incident wave. This mode has an effective index of 1.39−0.006i.
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Fig. 9. The ten first complex propagating constants associated to the ten first modes that
are exited on the upper face inside the coaxial waveguide. The red one corresponds to an
attenuated guide wave; its value isγ = 1.39−0.006i.

4. Conclusion

We have numerically studied the spectral response of subwavelength coaxial apertures. We have
calculated the propagating constants of the modes supported by a square coaxial waveguide.
Some of them correspond to attenuated guided modes. However, the excitation of such modes is
possible only when the incident wave matches the mode profile. Owing to the electric properties
of metals at optical wavelengths, the dispersion relationsof the modes of the transmission
channel are very specific and very different from those of thesame channel with perfectly
conducting walls. This preliminary study paves the way for future investigations in order to
engineer the modes and their excitation for applications.
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