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This study aims to give a general theory that enables the design of flat lenses based on hyperbolic metamaterials. We
derive a lens equation that is demonstrated to involve the curvature of the dispersion relation. Guided by this theory,
hyperbolic lenses of focal length ranging from zero to a few wavelength are simulated. High transmission efficiency
is also obtained by reducing the amount of metal compared to the dielectric material. © 2012 Optical Society of
America
OCIS codes: 160.3918, 310.6805.

Metamaterials play a crucial role in recent development
of advanced photonic systems. Their success stems from
their incomparable faculty to tailor the optical effective
response of matter [1]. This feature, combined with trans-
formation optics techniques, has allowed for the realiza-
tion of cloaking devices or novel lenses [2,3]. In the latter
case, Pendry’s pioneer work has shown that flat slabs
with a negative refractive index allow for the focalization
of subwavelength images [4]. This concept has been
realized for frequencies ranging from THz to GHz in
metamaterial-based devices that present either a nega-
tive permittivity or both negative permittivity and perme-
ability [5,6]. Such a flat lens with negative effective index
mimics a homogeneous medium with a parabolic disper-
sion relation k2x � k2y � ϵμω2=c2. In that case, the lens
equation is simply related to the thickness e of the flat
lens, and the object and image focal lengths, f o and f i, are
given by f o � f i � e [7]. Hyperbolic metamaterials have
then quite naturally emerged as an alternative approach
to yield subwavelength images. These anisotropic mate-
rials, which can be achieved by stacking dielectric and
metallic layers, actually present a hyperbolic dispersion
relation k2x=ϵy � k2y=ϵx � ω2=c2 with ϵy < 0 and ϵx > 0.
Near-field [8] or far-field [9] subwavelength images can
be formed using hyperbolic metamaterials. In the case of
near-field focalization [8], a canalization mechanism has
been proven to transport both propagating and evanes-
cent waves emitted by the source in a self-collimation
regime. An image is formed right at the end of the flat
lens with a theoretical resolution of λ=60. This super re-
solution is attributed to the hyperbolic dispersion ky ������
ϵx

p ���������������������������������������������
�ω2=c2� � �k2x � jϵyj�

q
that enables the propulsion of

propagating waves of real wavevector ky whatever the
value of the transverse wavevector kx. Hyperbolic lenses
convert the evanescent waves radiated by the object into
propagating waves carrying subwavelength details. The
conjugate points for such a lens are however located
right on the interfaces of the structure, which leads to
place both object and image at the vicinity of the
hyperbolic lens interfaces. This is also required to obtain
subwavelength resolved images since a part of the trans-
mitted spectrum is converted back into evanescent
waves at the end interface. Because of this conversion

mechanism, subwavelength resolution is only possible
at near-field distance smaller than λ=4. This process dif-
fers from the evanescent amplification in perfect lenses
that theoretically allows to focalize an image at distances
larger than λ with a super resolution. However, in both
parabolic and hyperbolic lenses the presence of plasmo-
nic modes have been identified to strongly contribute to
the resolution [10]. Beyond their near-field properties,
hyperbolic metamaterials have also been used to make
hyperlenses that provide far-field images with subwave-
length resolution [9,11–13]. As depicted in several works,
this property derives from the compression of the angu-
lar frequency, which allows in return to magnify the
object [14,15]. Hyperbolic metamaterials would seem to
only operate in those two extremes regimes (near- or far-
field) if Scalora and coauthors had not demonstrated that
the focalization at distances of λ=2 was possible [16].
However, to date, there is no theory that can help in the
design of flat hyperbolic lens whose focal length is sized
at will. To address this issue, we apply a beam propaga-
tion theory recently developed to demonstrate resonant
and slow light self-collimation in layered media [17,18].
This semiclassical theory, successfully applied for hyper-
lenses [19], allows us to derive the lens equation of
hyperbolic lenses and unifies previous results [8,16]. Our
approach even leads to an overall improvement of the
transmission efficiency of such lenses despite the optical
losses induced by the metallic layers.

Let us start by setting the optical conditions required to
design a hyperbolic lens. As discussedpreviously, a hyper-
bolic dispersion characterized by an anisotropic permit-
tivity tensor of diagonal elements ϵx > 0 and ϵy < 0 is
required. In the homogenization regime and for TM polar-
ization (out of plane magnetic field), Maxwell–Garnet’s
formulas give these components in terms of thicknesses
d1, d2 and permittivities ϵ1, ϵ2 of the dielectric andmetallic
slabs:

ϵx � ϵ1d1 � ϵ2d2
D

; ϵy �
�
ϵ−11 d1 � ϵ−12 d2

D

�
−1

; (1)

whereD � d1 � d2 is the lattice period. At optical frequen-
cies, the negative permittivity ϵ2 of metals allows the
design of a hyperbolicmediumof appropriate permittivity
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components when the following conditions, derived from
Eq. (1), are satisfied:

jϵ2j
ϵ1

<
d2
d1

<
ϵ1
jϵ2j

; − ϵ1 < ϵ2 < ϵ1: (2)

Here, we chose diamond and silver layers with permittiv-
ities equal to ϵ1 � 5.08 for diamond and ϵ2 � −1.78� 0.6i
for silver at 350 nm [20]. As shown by conditions (2), this
permittivity contrast enables us to drastically decrease
the amount of metal, reducing in turn the optical absorp-
tion of the lens. In the following, we will consider a lens
consisting ofN � 20 periods of hyperbolic metamaterials
with d1 � 2.8d2, presenting a particularly good transmis-
sion efficiency. Figure 1 shows the transmission diagram
computed for the fixed wavelength λ � 350 nm and for
a varying period D. The transmission larger than 20%
is enhanced by adding an antireflecting coating made of
diamond layers of thickness λ=�10 �����

ϵ1
p � placed at the

boundaries of the structure.
Let us derive the lens equation and show that the focal

length can be tuned from zero to a few wavelengths. The
propagation of a Gaussian beam on a distance y in a med-
ium with a dispersion relation ky�ω; kx� can be written

U�x; y� �
Z

∞

−∞

dkx ~U�kx; 0�eikxxeiky�kx�y; (3)

where ~U�kx; 0� � W 0=�2
���
π

p � exp�−�kxW 0=2�2� is the
angular spectrum of the Gaussian beam. The dispersion
relation can be approximated for small values of kx by

ky�ω; kx� � ky�ω; 0� −
k2x
2k0

1
nc

; �4�

where the curvature index [17,18] of the medium is
given by nc � −k0�∂2ky=∂k2xjkx�0�−1 with k0 � 2π=λ. For
a homogeneous medium, nc reduces to the refractive in-
dex. Equation (3) can be used, along with the quadratic
approximation for the dispersion relation, to describe the
propagation of a Gaussian beam on a distance f 0 in air
between the object focus and the lens, inside the multi-
layer considered as a homogeneous medium, and finally
on a distance f i in air between the lens and the image
(Fig. 1). This finally yields

U�x; L� � eihky�ω;0�iL
Z

∞

−∞

dkxU�kx; 0�eikxxe
−iL

k2x
2k0

D
1
nc

E
; (5)

where L � f o � ND� f i is the total distance between
the object and the image, hky�ω; 0�iL represents the
mean phase, and the average curvature index is given
by h1=nci � L−1� f o � ND=nc � f i�. When the average
curvature vanishes, h1=nci � 0, Eq. (5) simplifies to
U�x; L� � U�x; 0�eihky�ω;0�iL. This demonstrates that the
beam is phase delayed and retrieves its initial waist
W0 when the following lens equation is satisfied:

f o � f i � −
ND
nc

: (6)

The focal lengths are then directly determined by the
curvature index of hyperbolic dispersion relation. In
the homogenization regime, the curvature index is
driven by the effective permittivities: nc � ϵy=

�����
ϵx

p
. The

canalization regime proposed by Belov stands in flat iso-
frequency curves (IFCs) obtained when ϵy → −∞. In that
case as shown by Eq. (6), the focal distance tends to
zero so that the object and the image are located at the
vicinity of the lens interfaces. However, it has been also
shown [16] that such a hyperbolic lens can also focalize
light at a distance of λ=2. This result can be explained by
considering the curvature index beyond the long wave-
length regime. For that purpose, the IFCs are computed
for our structure by taking into account the metal losses
in the dispersion relation of 1D photonic crystals [17].
Figure 2(b) shows that the curvature index is positive
in the long wavelength limit when metallic losses are
taken into account. The canalization regime is obviously
perturbed by the introduction of optical losses since the
flatness of the IFC at D=λ � 0.05 is lost around kx � 0,
Fig. 2(a). The central propagating spectrum of the beam
diverges, showing the negative impact of losses on the
resolution. At the reduced frequency D=λ � 0.1 the cur-
vature index diverges to infinity, since a flat IFC is met.
Beyond this frequency, the curvature index ranges from
large negative values to zero when reaching a photonic
band gap between the first and second bands. This wide
variation of nc, which cannot be anticipated with the
homogenization approach, provides us a new way to de-
sign hyperbolic lenses of focal distance scaled between
zero and a few wavelengths. To demonstrate this prop-
erty, the theoretical image-focal distance f i computed
from Eq. (6) is compared with the simulated one (Fig. 3).

Fig. 1. Design and transmission diagram of the hyperlens with
and without antireflection coating (AR).

Fig. 2. (Color online) (a) IFCs computed for Ag/Diamond
layers with the metal losses. (b) Curvature index versus the
reduced frequency.
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The propagation of a Gaussian beam of waist W0 � λ=5
focalized at the distance f o � 0.1D from the lens is
computed with a modal method, which enables us to
extract the image-focal distance f i [21]. Both results
are in agreement and show that our hyperbolic lens
can make images focused from the lens interface to
one wavelength. The silver losses are seen to slightly de-
crease the focal distance of the structure. The magnetic
field maps attest to the quality of the images focalized
at distances f i � f0; λ=4; λ=2; λg and obtained for hyper-
bolic lenses of periods D � f35; 59; 66; 70gnm. In the last
case, despite the large thickness of the lens (1400 nm),
the total amount of silver reduced here to 369 nm, which
explains the high transmission efficiency larger than
25% (Fig. 1). The resolution of those hyperbolic lenses
is evaluated by computing the relative variation of the
waist for each focal distances. We have found that
ΔW=W 0 varies from 0.4 to 1.8 when the focal distance
increases from zero to one wavelength. Subwavelength
resolution (a waist smaller than λ=2) is obtained as long
as the focal length is smaller than 0.7λ, which is a good
result regarding the optical losses.
In conclusion, we derived the lens equation of hyper-

bolic lenses and showed that the focal length can be

adjusted on-demand. Beyond the homogenization regime,
light focalization is demonstrated to be driven by the
local dispersion curvature. This theory allows the trans-
mission efficiency to be optimized by a drastic reduction
of the metal amount that decreases optical losses.
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Fig. 3. (Color online) Focal distance versus de reduced fre-
quency D=λ. The bold and dashed lines obtained with Eq. (6)
are computed with and without silver losses. The circles corre-
sponds to the focal distance f i computed for a hyperbolic lens
of 20 periods. (a)–(d) Magnetic field maps of axis in units of λ.
The image is focalized at the focal distances 0, λ=4, λ=2 and λ.
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