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Goos–Hänchen effect in the gaps of photonic crystals
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We show the presence of the Goos–Hänchen effect when a monochromatic beam illuminates a photonic crystal
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When a light beam illuminates the interface between
two homogeneous media under total internal ref lec-
tion, the barycenter of the ref lected beam does not
coincide with that of the incident one: This is the
Goos–Hänchen effect.1 This phenomenon has been
analyzed in its many guises, both theoretically2 – 5 and
experimentally.1,6 – 8 In phenomenon’s original form
the incident beam comes from the medium with higher
index in order to obtain total internal ref lection. In
this Letter we show that there is also a Goos–Hänchen
shift when a monochromatic beam illuminates a pho-
tonic crystal, that is, a periodically structured device
exhibiting photonic bandgaps.9,10 Since the beams
considered in nanophotonic devices are usually very
narrow, this effect should be taken into account when
designing such structures when the photonic bandgap
phenomenon is involved. The Goos–Hänchen effect
is linked to the variation of the phase of the ref lection
coeff icient with the angle of incidence. In the case
of total internal ref lection the existence of evanescent
waves explains the variations of the phase. Such an
effect can be expected in photonic crystals in photonic
bandgaps, where the Bloch waves behave much like
evanescent ones. The main difficulty is f inding the
correct ref lection coefficient.

We deal with one-dimensional (1D) (for instance, a
stack of Bragg mirrors) or two-dimensional (2D) pho-
tonic crystals (for instance, a stack of diffraction grat-
ings periodic in the x direction), which are finite in
the y direction (located between the y � 0 and the
y � 2h planes) and infinite in the x and z directions
(see Fig. 1). We consider harmonic f ields with a time
dependence of exp�2ivt�. We denote l as the wave-
length in vacuum and k0 � 2p�l as the wave number
in vacuum. If we consider only z invariant f ields, the
problem of diffraction is reduced to the study of the two
usual polarized cases: Ek (electric field linearly polar-
ized along z) and Hk (magnetic f ield linearly polarized
along z).

The photonic crystal is illuminated by an incident
Gaussian beam,5
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and a0 � k0 sin u0, with u0 being the mean angle of
incidence of the beam (Fig. 1).

For a 1D crystal there is only one ref lected (and
hence transmitted) order of diffraction. There-
fore for an incident plane wave of wave vector
k � k0�sin u,2cos u� the f ield outside the crystal can
be written

u�x, y� � exp�ik0�x sin u 2 y cos u��

1r�k0, u�exp�ik0�x sin u 1 y cos u�� ,

for y $ 0

u�x, y� � t�k0, u�exp�ik0�x sin u 2 �y 1 h�cos u��,

for y # 2h

For a 2D crystal, when the period along the x axis
is smaller than l�2, there is only one ref lected (and

Fig. 1. One period of the photonic crystal consists in
two layers of height d and of permittivity ´1 � 11.56 and
´2 � 1. The Goos–Hänchen shift is the distance between
the centers of the incident and ref lected beams.

0146-9592/03/18-03$15.00/0 © 2003 Optical Society of America (ms #17250a(cjp))



2 OPTICS LETTERS / Vol. 28, No. 18 / September 15, 2003

hence one transmitted) propagating order of diffrac-
tion for each plane wave constituting the beam. Since
there are evanescent waves, the above expressions for
the f ield are no longer rigorous—they represent an ap-
proximation that holds far enough from the crystal.

It is then possible to characterize the electromag-
netic properties of the structure by simply deriving its
transfer matrix, with the considered structure being a
1D or a 2D crystal. More precisely,11 there exists only
one real matrix T �k0, u� such that

T
∑

1 1 r
ib0�1 2 r�

∏
� t

∑
1

ib0

∏
, (3)

where b0 � k0 cos u. This matrix gives an effective
description of the medium as seen by the incident field.

The matrix T is real and has a determinant11 that
is equal to 1. The eigenvalues of T are thus the roots
of the polynomial X2 2 tr�T � 1 1, which has real roots
if jtr�T �j . 2. The product of these roots is equal to 1.
One of the eigenvalues is smaller than 1 in modulus,
and we will denote it m. The other is equal to m21.

For a 1D photonic crystal we denote T0 as the trans-
fer matrix for a period. For the whole structure con-
taining N periods the transfer matrix T is equal to
TN
0 . We denote k as the eigenvalue of T0 whose modu-

lus is smaller than 1 �m � kN �. Then the amplitude
of the field is simply decreased by a factor k each time
it crosses a period of the structure. The field thus
behaves like an evanescent wave without being one,
strictly speaking.

Finally, for 1D and 2D structures jtr�T �j . 2 implies
that �k0, u� is in a forbidden band. In this case we de-
note v � �v1, v2� [w � �w1,w2�] as an eigenvector as-
sociated with m (m21). By solving Eq. (3), we obtain
the following form for the ref lection and transmission
coeff icients:
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where the functions f and g are defined by
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Since m , 1, then m2g�f , 1 and 1
12m2gf21 can be consid-

ered an infinite sum. Thus the coeff icients become12
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The physical meaning of these series is well known;
they represent the multiple ref lections12 inside the
photonic crystals on the y � 0 and y � 2h planes,
leading to the fact that an infinite number of beams
is transmitted and ref lected (although, of course, with
rapidly decreasing amplitude). Here we are only in-
terested in the f irst ref lected beam. The above result
means that this beam behaves for a 1D crystal as if the

structure were semi-infinite (since g is the ref lection
coefficient of the semi-infinite crystal). For a 2D crys-
tal g is not exactly the ref lection coeff icient of a semi-
infinite structure, although it tends toward this
coefficient when h ! 1`.

The beam can finally be written as

ud�x, y� �
Z

A�k0 sin u,W �g�k0, u�

3 exp�ik0�x sin u 1 y cos u��cos udu . (8)

Since T is a real matrix and m is real as well, v1
and v2 are also real and jgj � 1. Therefore g can be
written as

g�k0, u� � exp�if�k0,u�� . (9)

The Goos–Hänchen shift is the distance between the
centers of the incident and ref lected beams. Since the
center of the incident beam is located at x � 0, the shift
can be written as
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With the Parseval–Plancherel lemma we get
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Assuming a suff iciently large waist, we get

Gr � 2�k0 cos u�21 ≠f

≠u
. (12)

This result is identical in form to that obtained for
homogeneous media.

In fact, it can be shown that Eq. (6) is still valid for
�k0, u� outside the gap, in which case g is still defined

Fig. 2. Goos–Hänchen shift for a Gaussian beam of
waist 10l under a 50± angle of incidence for a wavelength
l�d [ �4.5, 18� (the height of a layer being of size 1).
The dashed-dotted curve represents jgj so that the gaps,
characterized by jgj � 1, can be easily identif ied by the
reader. The dashed curve represents the derivative of
the phase of g, which can barely be distinguished from
the shift for a Gaussian beam (solid curve).
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Fig. 3. Goos–Hänchen shift (normalized by l � 10) for a
Gaussian beam for an angle of incidence u [ �0,70�. The
dashed-dotted curve represents jgj.

as in Eq. (5) but is no longer of modulus 1. In this case
g � f , and g is chosen such that jgj , 1. Moreover,
g is a continuous function of �k0,u�.

We computed the Goos–Hänchen shift for a 1D pho-
tonic crystal illuminated by a Gaussian beam with a
50± angle of incidence. The crystal is presented in
Fig. 1, and the shift versus the wavelength is shown
in Fig. 2. As expected, the shift is important in the
gaps. More precisely, it presents a peak at the left side
of each gap caused by a swift variation of the phase of
g. This phenomenon has much in common with what
happens in the case of total internal ref lection. The
phase of the ref lection coeff icient indeed presents such
a behavior near the limit angle. Let us consider the
Goos–Hänchen shift when l�d � 10 is fixed and when
the angle of incidence may vary. It can be seen in
Fig. 3 that small angles correspond to couples �k0, u�
outside the gap. But when the angle of incidence in-
creases, the structure enters the gap.13 At the edge of
the gap the phase is subject to rapid variations, lead-
ing to a large shift of the outgoing beam, as in the case
of total internal ref lection.5

In conclusion, we have theoretically demonstrated
the presence of the Goos–Hänchen effect in the gaps

of photonic crystals and provided theoretical tools to
deal with such an effect. We have exhibited the func-
tion defined by Eq. (5), which is the correct ref lection
coefficient to be considered. Our numerical computa-
tions for a one-dimensional photonic crystal show that
the shift can indeed be found for values of l and u in
a gap. The shift is important when either l or u are
varied to cause the structure to enter the gap. In the
latter case the phenomenon has much in common with
the total internal ref lection near the limit angle. This
effect could play an important role in structures such
as that described in Ref. 14, where precise knowledge
of the trajectories of the ref lected or refracted beams
is needed for the structure to work properly.

A. Moreau’s e-mail address is moreau@lasmea.univ-
bpclermont.fr.
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