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Abstract. A new technique for injecting scalar fluctuations in a DNS of isotropic turbulence is
presented. It is used to study statistically steady states associated with different levels of mixing. The
results are analysed in terms of spectra and PDF, and they are used as a data base to investigate the
effect of the filtering operation that is performed in LES. It is shown that the PDF of the scalar is
substantially affected by the filtering operation. It is also shown that the Cook and Riley [1] subgrid
model allows reconstruction of a PDF which is in fairly good agreement with the unfiltered DNS
results. The consequences of estimating the scalar subgrid variance by scale similarity assumptions
are investigated. It is found that the results are improved by a local determination of the model
constant.
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1. Introduction

The mixing of a passive scalar by turbulence is of interest for many practical
applications. For description of turbulent reacting flows, the knowledge of low
order statistical moments is insufficient to account for the non linear nature of the
chemical reaction term. Indeed what is needed is an estimation of the probability
density function (PDF) of the scalar fluctuations. In particular, in the equilibrium
chemistry limit, most quantities of interest, such as the mass fraction of the product
or the radiation source term, can be computed from the PDF of a single conserved
scalar, called the mixture fraction [2]. It is known that the equation governing the
evolution of the PDF is not closed and contains terms such as the conditional scalar
dissipation which are unknown.

Description of turbulent reacting flows requires the understanding and predic-
tion of situations in which the mixing is far from being complete. Another issue
arising in a detailed understanding of turbulent mixing is the influence of the
length scale at which the scalar fluctuations are created or injected in the flow.
These considerations have led us to investigate the behaviour of a scalar field when
the mixing is incomplete and in which the level of unmixedness, as well as the
scalar length scale, can be controlled. We consider a simple case of homogeneous
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turbulence in which both the velocity and scalar fields are statistically stationary
and isotropic, using a Direct Numerical Simulation (DNS) in which both fields
are randomly forced. A new technique is proposed to inject the scalar fluctuations
in the simulation. This forcing technique allows us to control the scalar length
scale, as well as to investigate different cases corresponding to different levels of
mixing. It is presented in Section 2. Statistical isotropy and steadiness of the fields
have two advantages. First, the situation is conceptually very simple and therefore
is likely to be described by theoretical models. Secondly, good statistics can be
obtained by averaging the results over both time and space. Furthermore, in the
case of homogeneous turbulence, accurate and efficient numerical tools can be
used, namely pseudo-spectral techniques. The fact that the forcing technique in-
jects unmixed scalar fluctuations repetitively in time during the simulation disrupts
the properties of the scalar field. Consequently it never develops completely and
the results, although statistically stationary, have to be considered as characterizing
situations which would, in the case of practical flows, correspond to the early or
intermediate stages of the scalar mixing process. The results of the corresponding
DNS are presented and analysed in terms of spectra and PDF in Section 3.

For real flow computations at high Reynolds number encountered in the descrip-
tion of practical problems, Large Eddy Simulation (LES) appears to be the most
promising strategy for predicting the mixing with good accuracy. In particular,
capturing the dynamics of the large eddies is important for predicting the mixing
since the large scales are initiating the transfer of scalar fluctuations to the small
scales. It is known that LES involves a filtering operation to remove the small scales
and requires the introduction of subgrid models to restore the lost information. A
key problem for applications of LES to reacting flows is to account for the scalar
fluctuations at small scales and to reproduce properly the complete field statistics
(and in particular the scalar PDF) which are needed to evaluate the reaction term.
Among possibilities for evaluation of the PDF of the subgrid scalar fluctuations, it
has been suggested [3–5] to introduce a transport equation. This equation requires
closure and is generally solved by a Monte Carlo technique. The strategy adopted
by Cook and Riley [1], who proposed to model the PDF using a presumed form,
is simpler and was shown to lead to satisfactory results, for example in the case
of a spatially growing mixing layer by Jiménez et al. [6]. In Sections 4 and 5, the
results of our DNS are used to study the ability of subgrid models to reproduce
the scalar PDF correctly. To this enda priori tests are performed, using a filter
on the DNS data. The model of Cook and Riley is tested in the case of isotropic
turbulence with scalar injection. In a first set of tests, the model is used with values
of the subgrid-scale variance computed directly by filtering data from the DNS. A
second set of tests are then performed using models for the subgrid-scale variance
(“sub-models”) .

Although the long term goal of the present study is the understanding and pre-
diction of reacting and combustion flows, the problem is here addressed in the
simpler case of a passive scalar in incompressible turbulence.
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Figure 1. Illustration of the scalar injection technique in the computational domain. (a) Sub-
boxes in which the scalar is injected (n = 2 in this case):c = +1 in one subbox andc = −1 in
the other. (b) One dimensional scalar fluctuation along a line intersecting two subboxes, both
before and after an injection.

2. Numerical Method and Injection Technique

The Navier–Stokes equation and the convection-diffusion equation for the scalar
c are integrated using a pseudo-spectral method. These equations are solved in a
three dimensional cubic domain of sizeL, with periodic boundary conditions on
both the velocity and scalar. The time stepping scheme is a second-order Runge–
Kutta method. The DNS are performed at a resolution of 1283 grid points. Random
Fourier mode forcing, either white-noise or time correlated (generated using a
Langevin equation as proposed in [7]), is applied in the low wave-number range of
the velocity spectrum. This forcing leads to a statistically steady homogeneous and
isotropic velocity field.

The scalar forcing technique is illustrated by the sketch in Figure 1. It consists in
“refreshing” the field by injection of unmixed fluctuations in physical space. This
operation is repeated periodically in time, with a periodTi. In outline, the forcing
can be summarized as follows. In the computational domain (sizeL), n subboxes
of size l are randomly selected. In one half of these subboxes(n/2), c(x) = +1
is imposed, whereasc(x) = −1 is imposed in the other half. This procedure leads
to a forcing function whose PDF is essentially bi-modal. The choice ofl/L allows
control of the scalar integral length scaleLc and thus of the ratioRl = Lc/Lu
whereLu is the velocity integral length scale. Here,Lu andLc are defined by:

Lu = 3π

4

∫∞
0

Eu(k)

k
dk∫∞

0 Eu(k)dk
, (1)

Lc = π

2

∫∞
0

Ec(k)

k
dk∫∞

0 Ec(k)dk
, (2)
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Figure 2. Turbulent kinetic energy spectrum,Eu(K), at Reλ = 50 plotted using a Kol-
mogorov scaling; forcing was applied betweenk1 andk2 (k1L = 10,k2L = 20).

whereEu(k) andEc(k) are respectively the velocity and scalar spectra. A charac-
teristic time of injection is

Tres= Ti ∗
(
L3

nvf

)
, (3)

wherevf is the volume of a forced subbox. The choice of the time scale ratio

Rt = Tres/Tturb, (4)

whereTturb = Lu/u′ (u′ being the rms value of the fluctuation velocity) is the eddy
turnover time of the turbulent field, governs the level of mixing.

In order to avoid the sharp jumps inc associated with the edges of the injection
subboxes, which introduce spurious fluctuations outside the[−1;+1] domain (due
to Gibb’s phenomenon), the injected signal is smoothed using hyperbolic tangent
functions.

3. DNS Results

The simulations are performed at a Reynolds numberRλ = 50 (in whichRλ is
based on the Taylor microscale (λ), Rλ = u′λ/ν, ν being the viscosity) and a
Schmidt number equal to 1. The spectrum of turbulent kinetic energy is plotted
in Figure 2. This spectrum corresponds to the statistically steady state obtained
by randomly forcing the Fourier modes betweenk1 and k2. It characterizes the
velocity field that was used to obtain all results presented in the paper. Simulations
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Figure 3. Time evolution of the scalar rms value for three time scale ratios,Rt = 0.35,
Rt = 1.1 andRt = 2.2 (Rl = 0.71).

were carried out using two length scale ratios (Rl = 0.71 andRl = 0.47) and
for three time scale ratios (Rt = 2.2, Rt = 1.1 andRt = 0.35) expected to lead
to different levels of mixing. Figure 3 shows the time evolution of the scalar rms
value (σ = √〈c2〉) for Rt = 0.35,Rt = 1.1 andRt = 2.2 and for a given value
of the length scale ratio (Rl = 0.71). It is seen that, after a transient period, a
statistically steady state is reached. Results are time averaged once stationarity has
been attained. In Figure 4, the spectrum of the scalar fluctuation corresponding to
the steady state is plotted for two length scale ratiosRl = 0.71 andRl = 0.47.
It can be observed that the two spectra collapse nearly perfectly at small scales,
whereas they strongly differ in the small wave-number range. The position of the
maximum differs directly reflecting differences in the scales at which the scalar is
injected in the flow. Although the Reynolds number is relatively low, aK−5/3 range
is apparent in the scalar spectrum for the larger length scale ratio (Rl = 0.71). This
result is consistent with the classical analysis of Obukhov [8] and Corrsin [9] which
leads to the following expression in the convective range:

Ec(K) = C〈ε〉−1/3〈εc〉K−5/3, (5)

where〈ε〉 is the mean dissipation rate of kinetic energy and〈εc〉 is the mean dissi-
pation rate of scalar variance. A numerical estimation of the constantC appearing
in (5) gives:C ' 1.1, which corresponds to a value for the Corrsin–Obukhov
constant (defined as the constant appearing in the equivalent of (5) for the one-
dimensional spectrum) approximately equal to 0.65. This value is slightly larger
than the ones deduced from experiments and summarized by Sreenivasan [10]
(between 0.3 and 0.6). For the remainder of the paper, attention will be focused
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Figure 4. Scalar spectrum for two length scale ratios:Rl = 0.71 andRl = 0.47 (Rt = 2.2).

on the results obtained withRl = 0.71, which corresponds to the case where the
spectrum is the closest to a Corrsin–Obukhov scaling.

The PDF of the scalar (P(0) = 〈δ(c − 0)〉 where〈 . 〉 denotes an ensemble
average and0 denotes the value taken by the scalar fluctuation(c) were numeri-
cally estimated by generating histograms (with 60 intervals in the[−1;1] domain)
and averaging over both time and space (typically one hundred 1283 fields were
used). Figure 5 shows the PDF for three time scale ratios,Rt = 0.35,Rt = 1.1
andRt = 2.2. ForRt = 0.35, that is to say, for the value of the time scale
ratio corresponding to the highest injection rate, two peaks at values of0 close
to±1, indicating a high level of unmixing, are clearly observed in the probability
distribution. The peaks are much smaller in the caseRt = 2.2 corresponding to
the lowest injection rate. The PDF forRt = 1.1 is also given as an example of an
intermediate situation. In Figure 5, it is also apparent that the shape of the PDF is
affected by the injection over the whole range of fluctuations[−1;+1].

Away from the two peaks, at lower injection rate, it is seen that the probability
of small values of the scalar fluctuation increases, indicating that the field is more
efficiently mixed. Indeed, for the lowest injection rate (Rt = 2.2) and small to
moderate values of0, the PDF shows a classical Gaussian shape. This behaviour is
here observed locally (−0.5 < 0 < +0.5) and sufficiently far from the two peaks
associated with injection, but it indicates the presence in the field of zones where
mixing is strongly affecting the scalar distribution.

It should be stressed that the PDF obtained with the present injection technique
are very different from the ones obtained in the classical DNS case where the
unmixed scalar is injected via the initial conditions and where the field is studied
at long times (several eddy turnover times). Indeed, the present PDF show stronger
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Figure 5. Probability density function of the scalar fluctuation for three time scale ratios
Rt = 0.35,Rt = 1.1 andRt = 2.2 (Rl = 0.71).

similarities with those observed in the early and intermediate stages of scalar-field
development in the classical decaying case [11].

The conditional scalar dissipation (〈εc | c = 0〉) has an important effect in the
PDF equation. Indeed, in the case of a decaying isotropic scalar field, it is the only
unknown term appearing in the equation governing the time evolution of the PDF
[2]:

∂

∂t
P (0, t) = − ∂2

∂02
[〈εc | c = 0〉P(0, t)]. (6)

The behaviour of the conditional dissipation is analysed for different levels of mix-
ing. In Figure 6 the conditional dissipation is plotted for the three cases correspond-
ing to Figure 5. It may be observed that this quantity shows a strong dependency
on 0 at high levels of unmixing (Rt = 0.35). In the case of a low injection rate
(Rt = 2.2), this dependency tends to vanish for small and intermediate fiuctuations
and the conditional dissipation nearly exhibits a plateau. This plateau is found in
the range of fluctuations (−0.5 < 0 < +0.5) in which the PDF has a Gaussian
shape (see Figure 5), in agreement with the classical result that Gaussianity of
the scalar fluctuation is associated with uniform dissipation [12]. For the unmixed
situations, the high values of the pdf near±1 are associated with small values of
the conditional dissipation. The interpretation is that the peak values of the PDF are
associated with unmixed blobs reminiscent of the injections, and that these blobs
are only slightly contributing to the dissipation which mainly occurs in the rest of
the domain. This interpretation is corroborated by the visualization of iso-scalar
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Figure 6. Normalized conditional scalar dissipation for three time scale ratiosRt = 0.35,
Rt = 1.1 andRt = 2.2 (Rl = 0.71).

Figure 7. Visualization of the iso-scalar contours;c = ±0.9 on the right andc = 0 on the
left. Each box corresponds to one-eighth of the computational domain.

contours presented in Figure 7, where the blobs can be seen forc = ±0.9, whereas
in the rest of the domain, small scales fluctuations are observed (c = 0).
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4. Application to LES and Subgrid Modeling

In LES only the large scales are computed. They are separated from the rest of the
field by applying a filterG. The large scale componentc̄ of the scalar fluctuationc
is thus:

c̄(x, t) =
∫ ∫ ∫

V

G(|x− x′|)c(x′, t)dx′ (7)

and the subgrid fluctuation is

c′ = c − c̄. (8)

The equation for the filtered scalar field reads:

∂c̄

∂t
+ ūi ∂c̄

∂xi
= D ∂

2c̄

∂x2
i

− ∂τi
∂xi
− ∂Li

∂xi
(9)

in which τi andLi are respectively the subgrid and Leonard contributions:

τi = u′i c̄ + ūic′ + u′ic′,
Li = ūi c̄ − ūi c̄. (10)

The key problem for applications of LES to reacting flows is whether the subgrid
models used to account for the small scales can properly reproduce the statistics
of the whole field. The problem is twofold, the first question being whether the
effect of the unresolvable scales on the dynamics of large scales can be correctly
taken into account. This is the classical question of modeling theτi subgrid term
appearing in (9) (and its counterpart in the equation for the velocity), by introduc-
ing a model usually based on the concept of eddy diffusivity (respectively eddy
viscosity in theū equation). The second question is more specifically related to
reacting flows. It is whether the contribution of the small scales,c′, to the scalar
statistics can be satisfactorily modeled.

In the present paper, we almost exclusively address the second question; the
influence of the modeling ofτi being only very briefly discussed at the end of Sec-
tion 6. The question is addressed using the DNS results presented in the previous
section as a data base to performa priori tests of the Cook and Riley [1] subgrid
model. The filter for these tests is a top hat filter of widthh in physical space.

In LES of a reacting flow, one is primarily interested in predicting the filtered
reaction ratew̄ at every point. Sincew is generally a highly nonlinear function
of the scalar fluctuation (c being for example identified with the mixture fraction
z in this case) what is needed is not only information on the low order moments
of the scalar fluctuation, but details of its statistical distribution. In the case of
the equilibrium chemistry limit, the filtered reaction ratew̄ can be expressed as a
function of the PDF of the scalar fluctuations inside the filter volume (or “subgrid
PDF”)

Ph(c; c̄), (11)
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a quantity which clearly depends on the scalar distribution at small scales (smaller
than the filter widthh).

The above PDF is precisely the quantity that Cook and Riley [1] proposed to
model usingβ functions. This assumed PDF approximation leads to a family of
PDF which can be used to interpolate smoothly between different cases of mixing
taking into account the constraint that the fluctuation is confined to a bounded
interval. This type of approach is often used to evaluate the distribution of the
complete scalar field in Reynolds averaged calculations [13]. Following Cook and
Riley [1], theβ distribution is here used to approximate the scalar PDF at small
scales (see also [6, 14]). For a scalar varying between−1 and+1, theβ distribution
has the form:

Ph(c; c̄, cs) =
(

1+c
2

)a−1 (1−c
2

)b−1

2B(a, b)
(12)

in which a andb can be expressed in terms of the filtered scalarc̄ and subgrid
variancec2

s .

a =
(

1+ c̄
2

)(
(1+ c̄)(1− c̄)

c2
s

− 1

)
, (13)

b = 1− c̄
1+ c̄ a, (14)

c2
s = c2− c̄2. (15)

As pointed out by Cook and Riley [1], oncePh is specified, the complete scalar
PDF can be reconstructed. In the case of homogeneous turbulence this can be done
using the relation:

P(c) =
∫ ∫

Pc(c̄, cs)Ph(c; c̄, cs)dc̄ dcs , (16)

wherePc, is the joint probability of the filtered scalar and of the subgrid rms value.
In the next section, use will be made of our DNS data base to evaluate the Cook

and Riley subgrid model as a satisfactory assumption of the small scale statistics.
The criteria for these tests will be the ability of the model to reproduce the PDF
of the whole scalar fieldP(c) knowing the filtered fieldc̄. Such a criteria is of
importance becauseP(c) directly governs the mean reaction rate. A satisfactory
reproduction ofP(c) by the model also gives an indication that the subgrid PDF
Ph is correctly modeled and hence that the model is likely to be trustworthy when
used to predict the local reaction ratew̄ for LES of complex reacting flows. For
a real LES computation, the subgrid variance appearing in (12),c2

s , needs to be
estimated (introducing what is referred to as a “submodel”). However, in the next
sectionc2

s is directly deduced from the DNS using (15). In Section 6, the influence
of using a submodel forc2

s will be investigated.
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Figure 8. Probability density function of the scalar for filtered (h1/L = 1/32 and
h2/L = 1/16) and unfiltered DNS results;Rt = 2.2,Rl = 0.71.

Figure 9. Same as Figure 8, but withRt = 1.1.

5. Filtered Results and Reconstructed Scalar PDF

To investigate the effect of the filtering operation in a LES, the filter was applied to
the DNS results presented in Section 3. Two filter widthsh1 andh2 (h1/L = 1/32,
h2/L = 1/16) were used. The scalar PDF for the filtered and unfiltered results
are compared in Figures 8–10, for three time scale ratios. It can be observed that,
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Figure 10. Same as Figure 8, but withRt = 0.35.

compared to the unfiltered field, the PDF of the filtered scalar exhibits smaller
peaks atc = ±1 and a higher value at small fluctuations. It can also be observed
that the influence of the filtering is more important for larger filter width. These
results are in agreement with those of Jiménez et al. [6]. It should be mentioned that
the DNS results plotted in Figures 8–10 were slightly corrected before applying
the filter: spurious fluctuations larger than 1 (or smaller than−1) were assigned to
be equal to 1 (respectively−1). This correction was introduced in order to avoid
working with values of̄c outside the[−1 : 1] domain in the study presented below.

The filtered scalar was used to test the reconstruction technique proposed by
Cook and Riley [1] and described above. The test was performed for the three cases
of mixing and for the two filter widths. The reconstructed PDF were compared
with the complete PDF in Figures 11–13 forRt = 2.2, Rt = 1.1 andRt = 0.35
respectively. It is seen that there is good agreement between the reconstructed and
complete PDF. The reconstruction is less accurate at high injection rates, when
there is a high level of unmixing, whereas for the lowest injection rate (Rt = 2.2)
the agreement is nearly perfect, except near+1 and−1. It has to be pointed out
that the discrepancies observed between the DNS and recontructed PDF near+1
and−1 should not necessarily be interpreted as a deficiency of the subgrid model.
They could also be partially attributed to an imperfection in the DNS data base: in
the DNS, the peaks are not exactly situated at+1 and−1 as appears in Figure 11.
In Figures 11–13 it is also observed that, as expected, the PDF is reconstructed
with more accuracy for the smaller filter width.

The above results were obtained using (15) to estimate locally the subgrid vari-
ance directly from the DNS data. Before investigating the problem of modeling the
subgrid variance, we first checked the importance of a local estimation ofc2

s . We
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Figure 11. Reconstructed and unfiltered probability density functions;Rt = 2.2. Results
obtained with exact subgrid variance.

Figure 12. Same as Figure 11, but withRt = 1.1.

performed a test using an averaged estimation ofc2
s (〈c2

s 〉D in which 〈 . 〉D denotes
the average over the computational domain) inPh, instead of the local values. In
Figure 14 it is seen that the agreement with the DNS is less satisfactory with the
averaged estimation ofc2

s than with the local one. This is particularly true at large
fluctuations, where the averaged estimation leads to a strong overprediction of the
PDF.
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Figure 13. Same as Figure 11, but withRt = 0.35.

Figure 14. Reconstructed probability density functions. Comparison between results obtained
with local and averagedc2s (h1/L = 1/32,Rt = 2.2).

6. Influence of the Submodel for the Subgrid Variance

As stated above, before using the presumed PDF distribution, in a real LES the
scalar subgrid variance has to be estimated, and it is important to reproduce cor-
rectly the local variations of this quantity. It has been suggested [1] to follow
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the idea of scale similarity proposed by Ferziger [16] and hence to estimatec2
s

introducing a double filtering procedure

c2
s = Cs

(̂̄c2−̂̄c 2)
(17)

in which (̂.) denotes a filter with a larger width than the filter(.) and in whichCs
is a constant. This constant has to be evaluated.Cs can be interpreted as the ratio
between the variances of scalar fluctuations contained in two different parts of the
spectrum: the variance in the subgrid part ofEc and the variance in the intermediate
range between the test and true filters.Cs can then be evaluated by spectral integra-
tion, once the spectrumEc and the filter characteristics are specified, as suggested
by Cook [17]. Assuming aK−5/3 spectrum for the scalar fluctuation and an infinite
Reynolds number, Jiménez et al. [6] foundCs = 1.7. Cook and Riley [1] found
Cs = 0.81 by computing its value from their DNS. Réveillon and Vervisch [14]
(see also [6]) usedCs = 0.25.

An alternative route is to follow Sarkar et al. [18] who recently proposed to
use a Taylor expansion technique for modeling the subgrid moments of the scalar
fluctuations. This technique can be used to estimateCs. Instead of using (17), the
subgrid variance is expressed as:

c2
s = Cs

(
c̄2− ¯̄c 2)

. (18)

It should be noted that (17) and (18) are based on the same scale similarity as-
sumptions, the effect of applying the same filter twice being of the same nature as
applying a larger width filter. Only the numerical value forCs is modified.

Then a Taylor expansion of Equations (18) and (15) is performed. This proce-
dure leads to expressCs as [19]:

Cs ' c̄

¯̄c
1c̄

1 ¯̄c . (19)

It is important to stress that in this caseCs is locally estimated, whereas in the
classical approach it is a constant that depends only on the statistically averaged
scalar spectrum (and on the filter characteristics).

Figures 15–17 show comparisons between the unfiltered DNS PDF and the
reconstructed PDF, for two filter widthsh1/L = 1/32 andh2/L = 1/16, for
Rt = 2.2, Rt = 1.1 andRt = 0.35, with the subgrid variance expressed by (18)
and with the local estimation (19) ofCs. It is seen that good agreement between
the reconstructed and the unfiltered PDF is found for all three cases, the detailed
shape of the PDF being better reproduced for the well mixed situation (Rt = 2.2).
When compared to the results presented in the previous section (where the subgrid
variance was directly computed from the DNS), it appears that the results are now
less accurate but that the agreement still remains satisfactory.

In order to study the influence of the local estimation ofCs, we present results
obtained with the classical formulation (Equation (17) withCs constant). In this
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Figure 15. Reconstructed and unfiltered probability density functions (Rt = 2.2). Results
obtained using scale similarity estimation of the subgrid variance and local estimation of the
constant in (18);h1/L = 1/32,h2/L = 1/16.

Figure 16. Same as Figure 15, but withRt = 1.1.

case the test filter is a top hat filter whose width is twice the true filter width.
Figure 18 shows the reconstructed PDF obtained with three values forCs (Cs =
0.25, Cs = 0.81 andCs = 1.7 respectively corresponding to the values used
in [1, 6, 14]). The results obtained with the classical formulation (Cs constant),
although remaining acceptable, show larger errors than the ones obtained using
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Figure 17. Same as Figure 15, but withRt = 0.35.

Figure 18. Reconstructed and unfiltered probability density functions (Rt = 2.2). Results
obtained using the Cook and Riley model for the subgrid variance forCs = 0.25,Cs = 0.81
andCs = 1.7; h1/L = 1/32.

(18) and (19) (Figure 15,h1/L = 1/32). It may be concluded that a significant
improvement of the reconstruction of the PDF is obtained when local estimation of
Cs is performed using the technique proposed in [18].

As mentioned above, another source of error in LES is the effect of the subgrid
model on the resolved scalar field itself, that is to say, the effect of the modeling of
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τi via an eddy diffusivity to account for the cascade process in the scalar spectrum.
Although we did not perform a detailed study of this effect, preliminary results of
a posteriori tests [20] show that, when compared to the error associated with the
subgrid scalar fluctuation (using the Cook and Riley model [1]), the errors resulting
from the use of an eddy diffusivity appear to be of the same order or larger.

7. Conclusions

DNS of isotropic turbulence were performed with an injection technique for scalar
fiuctuations leading to statistically steady states associated with different levels
of mixing. The scalar PDF and its conditional dissipation were found to strongly
depend on the level of mixing. At high injection rates, the PDF is nearly bi-modal
with two peaks corresponding to blobs of nearly uniform concentrationc ' ±1
reminiscent of the injections. At low injection rates, although the peaks are still
present, they are much smaller and there is an intermediate range of fluctuations in
which the PDF is nearly Gaussian refiecting the existence of a plateau of uniform
conditional dissipation.

The PDF show strong similarities with those observed in the early and interme-
diate stages of the development of the scalar field in studies where the unmixed
scalar is injected via the initial condition. The present injection technique allows
one to obtain these types of PDF in statistically steady situations, which has the
advantage of permitting time averaged statistics.

The properties of the scalar fields generated by the injection technique are
perhaps somewhat artificial. A question that can then be raised is the physical rel-
evance of such fields. On the one hand, the injection technique may be considered
as a numerical tool, some of the properties of the resulting fields then possibly
being artifacts. On the other hand, it is possible to imagine experimental situations
sharing strong similarities with the one numerically studied in this paper. It has for
example been proposed to inject temperature fluctuations in water by micro-waves
[21].

Using the DNS results to performa priori tests of subgrid models has shown
that the error induced in the PDF by the filtering operation can be efficiently
corrected using the presumed PDF subgrid model of Cook and Riley [1]. Such
a conclusion is in agreement with several previous studies, and in particular that of
Jiménez et al. [6] in the case of a temporally growing mixing layer.

Results obtained using a direct estimation of the scalar subgrid variance from
the DNS data lead to very good agreement with the unfiltered DNS data.

Special attention has been devoted to the effect of the submodels used to esti-
mate the subgrid variance in the Cook and Riley model. It was found that mod-
els based on scale similarity arguments for the subgrid variance gave satisfactory
results, especially when a local estimation of the model constant was performed.
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