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Influence of spatial dispersion in metals on the optical response of deeply subwavelength slit arrays
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In the framework of the hydrodynamic model describing the response of electrons in a metal, we show that
arrays of very narrow and shallow metallic slits have an optical response that is influenced by the spatial dispersion
in metals arising from the repulsive interaction between electrons. As a simple Fabry-Perot model is not accurate
enough to describe the structure’s behavior, we propose considering the slits as generalized cavities with two
modes, one being propagative and the other evanescent. This very general model allows us to conclude that the
impact of spatial dispersion on the propagative mode is the key factor explaining why the whole structure is
sensitive to spatial dispersion. As the fabrication of such structures with relatively large gaps compared to previous
experiments is within our reach, this work paves the way for future much needed experiments on nonlocality.
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I. INTRODUCTION

Drude’s model [1] has proven highly accurate throughout
the twentieth century in describing the optical response of
metals, despite extensive studies in the 1970s and 1980s to
find its limits [2,3]. Recent experiments have however shown
that the behavior of resonances in subnanometer-sized gaps
cannot be explained with Drude’s model alone [4,5], making it
necessary to take into account the repulsion between electrons
inside the metal in the framework of a hydrodynamic model
[6–8]. In that case, the metallic response is spatially dispersive
and since it cannot be reduced to a single permittivity
depending on the frequency alone, it is often said to be
nonlocal. Further experiments would however be welcome
because of the subnanometer dimensions of the considered
gaps [9,10].

In the present work, we explain why the nonlocal response
of metals can be expected to have an impact on deeply
subwavelength metallic gratings, a structure that has been
extensively studied in the past decade for its extraordinary
transmission [11,12] and absorption [13–16]. We underline
that these effect will be clear for grooves that are as large as
a few nanometers and that the fabrication of such still very
narrow slits seems totally within our reach [15–17].

In the first part of this article, we will focus on the physical
analysis of the absorption by the metallic slits array when
spatial dispersion is neglected. It is now well accepted that the
extraordinary optical transmission of slit arrays is due to the
excitation of cavity resonances inside the slits [11,18], even
if nonresonant mechanisms allow for a high transmission for
very thin structures [19]. The only guided mode propagating
in the slits in p polarization has actually no cutoff and can
propagate whatever the slit width, with a wave vector kz close
to k0, the wave vector in vacuum in most cases. This is why, as
is usual for cavities, the thickness of the grating is roughly half
the wavelength in vacuum for the fundamental resonance [20],
except for exotic cases [21]. The same mechanism explains the
absorption by subwavelength grooves, the difference being

that, since the cavity is now closed on one end (see Fig. 1),
the depth of the grooves is only a quarter of the wavelength in
vacuum [14]. In all cases, an extraordinarily strong funneling
effect explains the way the energy is literally sucked up into
the slits [14,19].

As long as the metal can be considered as almost perfect
(in the IR [12,14] or THz [22] or even microwave [23] range)
or when the slit is larger than 50 nm in the optical range,
the above physical picture is fully accurate. However, below
that 50 nm threshold for the slit width in the optical range,
the guided mode is more localized in the metal than in the
slits because the skin depth δ is typically around 25 nm for
noble metals. The mode then experiences what can be called a
plasmonic drag: as the width of the gap decreases, it becomes
slower and slower, its group velocity goes to zero, and its wave
vector kz diverges [24]. Its effective wavelength, defined as
λeff = 2π/kz, thus becomes very small. The depth of the cavity
being actually proportional to this effective wavelength [25],
the thickness of the grating can be made extremely small and
the slits will still constitute a resonator [13]. This is the regime
we are interested in, because it is one of the rare structures
in which a plasmonic guided mode with a very high wave
vector can be excited [7]. We show however that the physics of
these resonators is slightly more complicated than previously
thought [13]: the slits are so shallow that the guided mode
is not the only channel for light to reach the bottom of the
structure. A one-mode model [11,18] is thus not sufficient to
describe the cavity accurately. We give here a generalized
Fabry-Perot formula to better predict the behavior of the
resonances.

In the second part, we take into account spatial dispersion
in the framework of the hydrodynamic model with realistic
parameters [7,26], and show that the response of the structure
is influenced by nonlocality. Moreover, using the generalized
Fabry-Perot formula, we show that the influence of nonlocality
on the wave vector of the guided mode explains almost totally
why the structure is so sensitive to spatial dispersion in metals,
completing the physical picture.
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FIG. 1. Representation of the grooves carved in metal, illumi-
nated from above by a TM-polarized plane wave. We distinguish
three different layers, layer II being the layer containing the slits.

II. GENERALIZED CAVITY MODEL

The structure considered here [13,15,16] is presented in
Fig. 1. It is an infinite array of deeply subwavelength grooves
of width a ranging 2 to 5 nm and depth h, from 15 to 30 nm
typically. The period d is ranging from 30 to 50 nm in the
present study. Since the structure is periodic with a period of
the order of twice the skin depth, the slits must be considered
as coupled, and the modes propagating in the slits can be
found for normal incidence by solving the classical dispersion
relation for metallo-dielectric structures [13]

cosh(κ a) cosh[κt (d − a)]

+ 1

2

[
κt

εκ
− εκ

κt

]
sinh(κa) sinh[κt (d − a)] − 1 = 0, (1)

where κ2
t = k2

n − ε k2
0 and κ2 = k2

n − k2
0, ε being the permit-

tivity of the metal and k0 = 2π/λ.
The different modes are indexed by n and characterized by

a propagation constant kz along the z axis, and a magnetic
field profile Hn

y (x). The magnetic field in layer II can thus be
written as a sum of modes propagating upward or downward:

Hy(x,z) =
∑

n

Hn
y (x)[An e−i knz + Bn e+i knz]e−iω t . (2)

As expected, there is only one propagating Bloch mode
(presenting a propagation constant k1 with a dominant real

part). All the other modes are evanescent and thus attenuated
in the z direction, with essentially imaginary propagation
constants kn. The propagative mode is reflected back and
forth in the slits, thus producing the resonance. The actual
reflection coefficients (r1 for the interface between the grating
and air, rb

1 for the bottom of the grooves) can be computed
using rigorous coupled-wave analysis (RCWA) [27,28], as
is quite common for metallic gratings [18,21]. We underline
that the computation of the reflection coefficients requires the
computation of many evanescent modes. One could expect,
from the vast literature on the subject, that the reflection
coefficient of the whole structure can simply be written using
a Fabry-Perot formula:

r = r0 + r1 t01 t10 e2ik1h

1 − r1 rb
1 e2ik1 h

, (3)

where t01 is the transmission coefficient from the incoming
plane wave to the propagating mode in the slits and t10 the
transmission coefficient from the mode in the slits to the
outgoing plane wave, which are computed using RCWA. While
such an approach has proved extremely accurate in the past for
the extraordinary optical transmission (EOT) [11,18,21,29],
here, quite unexpectedly, it fails to predict the position of
the resonance given by local RCWA full simulations (see
Fig. 2).

The assumption underlying (3) is that only the propagative
mode is able to reach the bottom of the grooves. However,
because the depth of the grating is smaller than the skin
depth, not all the evanescent modes are attenuated enough
to be neglected. To be more precise, one mode in particular,
although it is not propagative in the z direction, presents an
attenuation constant that is so low that it is still significantly
strong at the bottom of the slits.

The profile of this mode is shown Fig. 2 and it is relatively
flat. This mode is thus very close to the attenuated wave that
is excited in the metal when a plane wave is reflected by a
metallic screen. Moreover, each reflection of the propagating
mode at the top or at the bottom of the grooves generates this
mode too, so that it fully participates to the resonance. We
propose here a very general two-mode approach to model the
reflection coefficient of the structure.

In this framework, we call A1 and B1 (resp. A2 and B2) the
amplitude of the propagating (resp. evanescent) mode traveling
(resp. attenuating) downwards or upwards (see Fig. 2). The
reflection coefficient of the whole structure can then be written
as the result of the reflection on the metallic plane plus the light
that comes from the two modes inside the grating layer:

r = r0 + t10B1 + t20 B2. (4)

The downward amplitudes can be written as a result of the
direct excitation by the incoming plane wave, in addition to
the reflection of the modes inside the slits,

A1 = t01 + r1 B1 + r21 B2,

A2 = t02 + r2 B2 + r12 B2,
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FIG. 2. (a) Representation of the generalized cavity model with
the different reflection coefficients. (b) Top: Profile of the propagating
mode (black curve) and the first evanescent mode (red curve). Bottom:
Diverging effective index of the propagating mode as a function of
the gap width (solid line) and the mode guided in a single isolated slit,
the gap-plasmon polariton (dotted line). (c) Reflection coefficient of
the whole structure, considering only the fundamental Bloch mode
(black curve), a 2-mode model (red curve), and a complete simulation
(green curve) for different groove depths (left: 7 nm; center: 3 nm;
right: 2 nm). Inset: Simulation with COMSOL Multiphysics of the
magnetic field and the Poynting vector at the entrance of the slits.

and the equivalent is obtained at the bottom of the grooves for
the upward amplitudes,

B1 e−ik1h = rb
1 A1 eik1h + rb

21 B2 eik2h,

B2 e−ik2h = rb
2 A1 eik1h + rb

12 A2 eik2h.

This forces us to introduce all the above new reflection and
coupling coefficients, which can be computed using RCWA.
This approach is inspired by mode recycling in photonic
crystal cavities [30], generalized here to (i) a nonsymmetrical
plasmonic cavity and (ii) the case where the evanescent mode
can be directly excited by the incident wave.

We first use the relation above to eliminate B2 from the
whole system, yielding

r = r0 + t10B1 + t20
(
rb

2 A2e
2ik2h + rb

12A1e
i(k1+k2)h

)
,

A1 = t01 + r1 B1 + r21
(
rb

2 A2e
2ik2h + rb

12A1e
i(k1+k2)h

)
,

A2 = t02 + r1
(
rb

2 A2e
2ik2h + rb

12A1e
i(k1+k2)h) + r12B1,

B1 = rb
1 A1e

2ik1h + rb
21A2e

i(k1+k2)h.

We finally get from these equations an expression for A2,

A2 = t ′02 + c A1 + r ′
12B1,

where

t ′02 = t02

1 − r2r
b
2 e2ik2h

,

c = r2r
b
12e

i(k2+γ1)h

1 − r2r
b
2 e2ik2h

,

r ′
12 = r12

1 − r2r
b
2 e2ik2h

.

We can thus replace A2 in the above equations, to yield

r = r ′
0 + t ′10B1 + αA1,

A1 = t01 + r1B1 + r21
[
rb

2

(
t ′02 + cA1

+ r ′
12B1

)
e2ik2h + rb

12A1e
i(k1+k2)h],

B1 = rb
1 A1e

2ik1h + rb
21

(
t ′02 + cA1 + r ′

12B1
)
ei(k1+k2)h,

where

r ′
0 = r0 + t20r

b
2 t ′02e

2ik2h,

t ′10 = t10 + t20r
b
2 r ′

12e
2ik2h,

α = t20r
b
12e

i(k1+k2)h + t20r
b
2 ce2ik2h.

And finally, the system reduces to

r = r ′
0 + t ′10B1 + αA1,

A1 = r ′
1B1 + t ′01,

B1 = rb′
1 A1e

2ik1h + t ′′02,

where

r ′
1 = rb

2 r21r
′
12e

2ik2h

1 − r21r
b
12e

i(k1+k2)h
,

t ′01 = t01 + t ′02r21r
b
2 e2ik2h,

rb′
1 = rb

1 rb
21ce

i(k2−γ1)h

1 − rb
21r

′−
12 ei(k2−k1)h

,

t ′′02 = t ′02r
b
21e

i(k2+γ1)h

1 − rb
21r

′−
12 ei(k2+k1)h

.

It is not obvious yet that these equations can be used to yield
a generalized Fabry-Perot formula, because two terms have
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appeared that do not exist in the classical one-mode model.
More precisely, to retrieve the exact same equations, t ′′02 and
α would have to vanish. This is usually the case in photonic
crystals—but physically here, the evanescent mode is directly
and efficiently excited by the incoming wave so that t ′′02 is not
negligible.

We now replace A1 with its expression in the reflection
coefficient’s formula, to yield

r = r ′′
0 + t ′′10B1,

B1 = rb′
1 e2ik1h A1e

2ik1h + t ′′02,

A1 = r ′
1B1 + t ′01,

where new effective coefficients are introduced:

r ′′
0 = r ′

0 + αt ′01, (5)

t ′′10 = t ′10 + αr ′
1. (6)

Finally, A1 can be written

A1 = t ′01 + t ′′02r
′
1

1 − r ′
1r

b′
1 e2ik1h

, (7)

and the reflection coefficient, by eliminating B1, gives

r = r ′′
0 + t ′′10r

b′
1 A1e

2ik1h + t ′′10t
′′
02, (8)

leading to the desired result

r = r ′′
0 + t ′′10t

′′
02 + rb′

1 e2ik1ht ′′10(t ′10 + t ′′02r
′
1)

1 − r ′
1r

b′
1 e2ik1h

. (9)

If we call

reff = r ′′
0 + t ′′10t

′′
02, (10)

teff = t ′′10(t ′10 + t ′′02r
′
1), (11)

then the reflection coefficient can be put under a form similar
to the Fabry-Perot formula,

r = reff + teffr
b′
1 e2ik1h

1 − r ′
1r

b′
1 e2ik1h

. (12)

This formula can be considered as a generalized Fabry-Perot
formula. The agreement between this formula and a full
RCWA simulation [see Fig. 2(c)], which can be considered
as a multimode model, is excellent. The two modes are
thus the only ones that are responsible for the resonance.
More precisely, the propagating mode is responsible for the
resonance and the evanescent mode is responsible for a shift
of this resonance compared to the one-mode model.

The effective reflection coefficients are easy to compute,
once the real coefficients are extracted from the scattering
matrices of the interfaces between the different space regions
[21]. The resonance condition now reads

arg(r ′
1) + arg(rb′

1 ) + 2Re(k1)h = 2mπ, (13)

where m is a relative integer. Figure 3 shows the phase of the
effective reflection coefficients, compared to the phase of
the real reflection coefficients. There is essentially a shift of the
phase of r ′

1 compared to the one of r1. This totally explains why,
compared to the one-mode model prediction, the resonance is
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FIG. 3. Phase of the reflection coefficients. Top: Phase of r1 and
r ′

1 (black and green curves, respectively). Bottom: Phase of rb
1 and rb′

1

(black and green lines, respectively).

shifted since the shift in the phase has a direct impact on the
resonance condition. The fact that the slope of the phase is not
changed means that there is almost no impact on the quality
factor of the resonance, so that the only impact of the second
mode on the resonance is to shift it without changing its width.

III. IMPACT OF SPATIAL DISPERSION

Deeply subwavelength gratings are very interesting because
the absorbing resonance is the sign that a guided mode
with a very high wave vector has been efficiently excited
in the structure. Such modes are likely to be influenced by
the repulsion between electrons [7] because their effective
wavelength is so small that is approaches the mean-free path
of electrons in the metal [31], which is the relevant scale for
nonlocality. That is the reason why the spatial dispersion is
expected to have an impact on the slit array’s response.

We use here the hydrodynamic model [7,8] to take the
intrinsic nonlocality of the metallic response into account. The
currents J corresponding to the movement of the free electrons
trapped in the metal can be taken into account as an effective
polarization Pf defined by Ṗf = J. The electron gas can be
considered as a fluid [6], leading to the following linearized
equation

−β2∇(∇ · Pf ) + P̈f + γ Ṗf = ε0 ω2
p E, (14)

where γ is the damping factor, ωp the plasma frequency, and
β � 1.35 × 106 m/s. All these parameters (except β), as well
as the dispersive susceptibility χb due to interband transitions,
are taken from careful fits of the available experimental data
using a Drude and Brendel-Bormann model [32]. This allows
us to clearly distinguish between the response of the jellium
and the response of the background, which we assume is local.
Maxwell’s equations then reduce to [7]

∇ × E = iωμ0H,

∇ × H = −iωε0(1 + χb)E + Pf ,
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where, thanks to (14), the polarization can be written
as

Pf = ε0ω
2
p

ω2 + iγ ω

[
E − (1 + χb)

β2

ω2
p

∇(∇ · E)

]
. (15)

The resolution of such equations in a multilayered structure
requires the introduction of an additional boundary condition
(ABC). The most obvious ABC is in that case to consider
that no electrons are allowed to get out of the metal [25],
which means J · n = Pf · n = 0, where n is the normal
to the interface—and it turns out to be one of the most
conservative ABCs, so that nonlocal effects are not likely to
be overestimated [7].

In this framework the dispersion relation giving the
propagation constant of the modes is modified [26] and
becomes

1 −
[
ε� sinh(κte)

kz sinh(κle)

]

= cosh(κa) cosh(κte)

+ 1

2

[
κt

εκa
− εκa

1 − κt

+ �2

(
ε

βκte

)]
sinh(κa) sinh(κte)

+ �

sinh(κle)

{
sinh(κa)

β

[
1 − cosh(κte) cosh(κle)

− ε sinh(κte)

κt

cosh(κa) cosh(κte)

]}
, (16)

where e = d − a, � = k2
z

κl
( 1
ε

− 1
1+χb

), κ2
l = k2

z + (
ω2

p

β2 )( 1
χf

+
1

1+χb
), κ2

t = k2
z − ε k2

0, and κ2 = k2
z − k0. This allows us to

consider the impact of nonlocality on the propagation constants
of the two modes that are involved in the resonance of the
structure—both the propagating and the least evanescent of the
remaining modes, as shown Fig. 4. The figure actually shows
that the propagating mode is significantly more sensitive to
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nonlocality because of its large wave vector k1. A high wave
vector actually means a large value for � and thus a noticeable
effect on the dispersion relation.

In order to assess the impact of nonlocality on the whole
structure, we have used COMSOL simulations, as a full non-
local modal method is still beyond our reach. As expected, the
resonance is blueshifted compared to a local calculation [from
15 nm for 3 nm wide slits, see Fig. 5(b), to 24 nm for 2 nm wide
slits, see Fig. 5(a)]. Interestingly, using a two-mode model but
changing only the propagation constant k1 of the fundamental
mode as computed using the nonlocal dispersion relation (16)
allows us to account for most of the shift (see Fig. 5). This
demonstrates that the major reason why the whole structure is
sensitive to the spatially dispersive response of the metal is that
nonlocality has an impact on the wave vector of the single mode
propagating in the slits. Its wave vector is actually not as high as
predicted by the local theory, thus leading to a blueshift of the
resonance.

IV. CONCLUSION

The mode propagating in a single extremely thin slit is
often called a gap-plasmon polariton, to distinguish it from the
surface plasmon polariton. The propagating mode considered
here is of course closely related and is submitted to the same
physical effect: the presence of the metal makes the mode
slow, with a very large wave vector. This allows to understand
(i) that deeply subwavelength structures, sometimes smaller
than the skin depth, can still be considered as cavities and (ii)
why, as we have shown here, the smallest resonators are likely
to be influenced by spatial dispersion in metals. This class of
resonators is called gap-plasmon resonators and it has recently
been demonstrated experimentally that these resonators could
constitute extraordinarily efficient concentrators and absorbers
[15,16,33–35] and produce totally unprecedented Purcell
enhancements [36,37]. Theoretical studies show that they
have a lot of potential as scatterers for light extraction too
[38,39]. We are thus confident that the very general theoretical
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tools we have introduced here can be useful to study these
structures and help design them in the future, as they reach
sizes that are well below the size of conventional cavity
resonators.
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G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, Phys.
Rev. B 85, 205430 (2012).

[24] S. I. Bozhevolnyi and T. Søndergaard, Opt. Express 15, 10869
(2007).

[25] W. Yan, M. Wubs, and N. A. Mortensen, Phys. Rev. B 86, 205429
(2012).

[26] J. Benedicto, R. Pollès, C. Ciracı̀, E. Centeno, D. R. Smith, and
A. Moreau, J. Opt. Soc. Am. A 32, 1581 (2015).

[27] P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996).
[28] G. Granet and B. Guizal, J. Opt. Soc. Am. A 13, 1019 (1996).
[29] L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M.

Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev.
Lett. 86, 1114 (2001).

[30] C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, Opt. Express
13, 245 (2005).

[31] P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet,
Phys. Rev. B 77, 035431 (2008).
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