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Impact of nonlocal response on metallodielectric multilayers and optical patch antennas
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We analyze the impact of nonlocality on the waveguide modes of metallodielectric multilayers and optical
patch antennas, the latter formed from metal strips closely spaced above a metallic plane. We model both the
nonlocal effects associated with the conduction electrons of the metal and the previously overlooked response of
bound electrons. We show that the fundamental mode of a metal-dielectric-metal waveguide, sometimes called
the gap plasmon, is very sensitive to nonlocality when the insulating, dielectric layers are thinner than 5 nm. We
suggest that optical patch antennas, which can easily be fabricated with controlled dielectric spacer layers and
can be interrogated using far-field scattering, can enable the measurement of nonlocality in metals with good
accuracy.
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I. INTRODUCTION

With the emergence of new analytical, numerical, and
nanofabrication tools, the pursuit of plasmonic systems for
a variety of nanophotonic applications has expanded rapidly
in recent years.1–3 Plasmonic media here can be defined
as conducting surfaces and nanostructures, whose optical
scattering is largely dominated by the response of the con-
duction electrons. Plasmonic behavior is typically associated
with excitation wavelengths at which the inertial inductance
of the charge carriers plays a critical role in the collective
response.4 In the design of plasmonic media, the dynamics of
the conduction electrons can often be well approximated by
assuming a Drude-like model for the permittivity, which has
the frequency dispersive form

ε = 1 − ω2
p

ω2 + i�ω
(1)

assuming a time dependence of e−iω t . The plasma frequency
ωp, proportional to the square root of the carrier density,
typically lies within the ultraviolet portion of the spectrum
for many metals. Thus, for frequencies just below the plasma
frequency, the electric permittivity can be characterized as a
lossy dielectric, for which the real part of the permittivity is
moderately negative. At wavelengths where the real part of
the permittivity is negative, surface plasmon modes can be
supported, which are collective oscillations of the coupled
electromagnetic field and conduction electrons. Surface plas-
mons can serve to transport energy along metal surfaces in a
manner similar to dielectric waveguides, but are also playing
an increasingly important role in the field of metamaterials,
where metallic nanostructures are often used as elements
that provide strong and customizable scattering. Surface
plasmons represent the underlying mechanism behind perfect
lenses,5,6 hyperlenses,7,8 spasers,9–11 and many other proposed
metamaterial-related devices.

The simplicity of the Drude model of electron response, (1),
has enabled the rapid modeling of plasmonic and metamaterial
structures; the salient features associated with most plasmonic
structures presented to date can usually be computed with suf-
ficient accuracy—sometimes even analytically—assuming the

Drude formula. Particularly when the underlying physics is the
main focus rather than detailed performance characteristics,
Eq. (1) frequently provides an adequate description of the plas-
monic response. It should be noted that despite the relatively
simple form of Eq. (1), the numerical simulation of plasmonic
systems remains a nontrivial task because the surface plasmon
spatial variation is not limited by the wavelength of light;
rather, the surface plasmon can confine light to nanometer
sized regions, making plasmonic structures an inherently mul-
tiscale modeling problem.12 Thus, the frequency dispersion
and the negative permittivity associated with the Drude model
contain nontrivial physics, and have been successfully applied
to a wide range of plasmonic and metamaterial configurations.
Naturally, the actual electronic response of a metal or highly
doped semiconductor is much more complicated than that
suggested by Eq. (1). Plasmonic structures are now reliably
fabricated at the nanometer and subnanometer scales, where
new optical properties arise that cannot be accounted for solely
by the Drude model.13,14 Since these subnanometer features
are likely to be crucial for optimizing field localization and
enhancement,15–17 a more detailed description of the properties
of plasmonic devices is demanded. Effects that would be
secondary or of no consequence to the overall function of
prior plasmonic devices may introduce major constraints on
the detailed performance and ultimate competitiveness of
optimized plasmonic structures with subnanometer features.
For these reasons, it is relevant to consider a more advanced
physical model of the carrier response in conductors.

The Drude model of a conductor assumes only the par-
ticipation of conduction electrons (no bound charges), and
further assumes a straightforward force-response relationship
between the applied electric field and responding current
density. An intrinsic feature of this model is that the responding
current density at a given point within the material is
proportional to the electric field at that point; that is, the
Drude model assumes locality. Even when the exact, measured
values of the bulk permittivity are used, there is an implicit
assumption of locality since the permittivity is only a function
of frequency rather than of both frequency and wave vector.
To capture the additional physics associated with electronic
response, it is necessary to consider a more detailed model of
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the force-response relationship between the field and current
density.

More accurate descriptions of the free electron gas have
been proposed in the past, including a description based on
a hydrodynamical model for the conduction electrons18–25

and a microscopic description initiated by Feibelman.26–28

The latter has been improved over the years29 and has
been recently used to include the effects of nonlocality on
metallic slabs30 and slot waveguides.31 The hydrodynamical
approach clearly suffers from an uncertainty about which
additional boundary conditions should be used, but allows
for more transparent physical interpretations.24 Moreover, the
hydrodynamical model can be reasonably implemented in
numerical calculations and also is useful for finding closed-
form, analytical results. For example, the hydrodynamical
model has been used in conjunction with transformation optics
techniques to find analytical expressions for nanostructures
that illustrate the impact of nonlocal response.14,15 Recent
experiments have shown that the hydrodynamical model is
able to describe very accurately the plasmon resonance shift
exhibited by spherical nanoparticles interacting with a metallic
film.16 While the hydrodynamical model is clearly not the most
sophisticated approach to describe the free electron gas, it can
obviously capture the physics of nonlocality and it seems it
can be made quite accurate through a correct choice of the free
parameters it contains for situations of interest in plasmonics.

In the present work, we first try to describe the response
of the bound electrons as a polarizable medium, as has been
shown to be accurate for Feibelman’s method,29 but in the
framework of the hydrodynamical model. We find that this
description greatly simplifies the discussion with respect to the
additional boundary conditions. We explore the consequences
of the model on the reflection of a wave by a metallic surface,
on the surface plasmon, and finally on the propagation of a
guided wave along a thin metallic waveguide, as Wang and
Kempa have shown that nonlocal effects could be expected31

for such a structure. Using an analytical dispersion relation, we
show that the nonlocal effects are enhanced in the slow light
regime, when the waveguide is a few nanometers thick. Finally
we study the large impact of nonlocality on optical patch
nanoantennas32–36 where the gap beneath the patch behaves
as a cavity, making these structures extremely sensitive.17 The
optical patch geometry paves the way for future experiments in
which the effects associated with nonlocality will have easily
measurable effects at wavelengths in the visible.

II. NONLOCAL RESPONSE OF METALS

While our analysis is not specific to metals, we use the
term metal throughout while keeping in mind the analysis can
be applied to highly doped semiconductors37 and potentially
other conducting systems.38 The polarization of a metal, and
hence its dielectric function, generally contains contributions
from both bound and free conduction electrons. Because
we need to apply different physical response models to the
free and bound electrons, it is essential to first distinguish
their relative contributions. The experimental permittivity
curves can be fitted39 with a Drude term (1) that models
the free electron contribution, to which is added a sum
over the Brendel-Bormann40 oscillator terms that models the
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FIG. 1. Real part of the relative permittivity of gold in the visible
(solid line) and Drude permittivity according to Ref. 39 (dotted line).
The difference is the contribution of bound electrons. Inset: Imaginary
part of the relative permittivity, same x scale, same lines.

susceptibility arising from the bound electron contributions.
Figure 1 shows the permittivity of gold obtained through the
model as well as the fitted Drude permittivity, corresponding to
1 + χf , where χf is the the susceptibility of the free electrons.
The difference (not shown) between the modeled permittivity
and the fitted Drude term corresponds to the contribution of
the bound electrons, χb.

We assume here that the nonlocal response of the metal is
largely dominated by the nonlocality induced by free electrons,
so that we can treat the bound electron contribution as purely
local, as some authors do.14,41,42 Bound electrons too can be
expected to present a nonlocal response, similar to what occurs
in dielectrics.43,44 Our assumption is equivalent to assuming
that the interactions between electrons in a free electron
gas (through a quantum pressure and Coulomb repulsion)
are more intense than essentially dipole-dipole interaction
between bound electrons.

Under an applied electric field, the medium will undergo
a polarization with contributions from both bound and free
electrons. The total polarization vector can thus be written

P = Pb + Pf , (2)

where Pb = ε0χbE, χb being the susceptibility of the bound
electrons, with the currents in the free electron gas related to
the polarization in the usual manner:

Ṗf = J. (3)

By incorporating all responding currents and charges into
the polarization, we can treat the metal as a dielectric, such
that the electric flux density, D = ε0E + Pb + Pf , satisfies
∇ · D = 0. Taking the divergence of D and writing Pb in terms
of the electric field, we obtain

∇ · Pf = −ε0(1 + χb) ∇ · E, (4)

where we have explicitly assumed that the bound electron
susceptibility is local and can be taken outside the divergence
operator.

The free electron current density can be related to the
applied electric field using the hydrodynamical model. Using
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Eq. (2), a linearized equation relating Pf to the electric field
is given by25

−β2 ∇(∇ · Pf ) + P̈f + γ Ṗf = ε0ω
2
pE, (5)

where γ is the damping factor, due to collisions of the electron
gas with the ion grid, ωp is the plasma frequency of the
metal, and β is the phenomenological nonlocal parameter,
proportional to the Fermi velocity vF . Usually the value of
β =

√
2
3vF has been considered in the literature. However,

a slightly more realistic hydrodynamic model should take
into account other sources of nonlocality, such as the Bohm
potential, which can be shown to be of the same order of the
Fermi pressure.45 Though it is beyond the scope of this paper
to introduce a more sophisticated model, it makes sense from
a phenomenological approach to consider a more empirical
value for the parameter β. Recently it has been shown for
plasmonic systems of film-coupled gold nanoparticles that
the value β =

√
5
3

EF

m
� 1.27 × 106 m/s gives a very good

agreement with experimental data.16 In this work we will then
assume this former value for both gold and silver.

Assuming a harmonic solution of the form e−iωt , and using
Eq. (4), the polarization Pf can finally be written

Pf = −ε0
ω2

p

ω2 + iγ ω

(
E − (1 + χb)

β2

ω2
p

∇(∇ · E)

)
, (6)

where the term

χf = − ω2
p

ω2 + iγ ω
(7)

can be identified as the local susceptibility associated with free
electrons, corresponding to the Drude model.

We have written the polarization terms in such a manner that
the free and bound electron contributions can be distinguished.
In determining the various parameters in these equations for
the calculations that follow, we use the model provided by
Ref. 39 and shown in Fig. 1.

III. TRANSVERSE AND LONGITUDINAL MODES
IN METALS

In a metal, taking the above description of nonlocality into
account, Maxwell’s equations can now be written

∇ × E = iωμ0H, (8)

∇ × H = −iω(ε0(1 + χb)E + Pf )

= −iωε0ε(E − α∇(∇ · E)), (9)

where ε is the local relative permittivity of the metal

ε = 1 + χb + χf (10)

and

α = χf (1 + χb)

ε

β2

ω2
p

= β2

ω2
p

1+χb
− ω2 − iγ ω

. (11)

As shown rigorously in the Appendix, there are two
different solutions to these equations corresponding to two
different kinds of waves. The first solution satisfies ∇ · E = 0,
so that it corresponds to the standard solution to Maxwell’s
equations when the nonlocality is overlooked. Equations (8)
and (9) become

∇ × E = iωμ0H, (12)

∇ × H = −iωε0εE. (13)

Finally all the fields satisfy Helmholtz’s equation

∇2H + ε k2
0H = 0, (14)

where k0 = ω2

c2 . Since the divergence of the electric field is
zero, the electric field is orthogonal to the wave vector when
the wave is propagative, which means it is transverse. The
dispersion relation for these transverse waves is thus

k2 = ε k2
0 = ε

ω2

c2
. (15)

The second kind of solution is curl free, which means it
satisfies ∇ × E = 0 and there is no accompanying magnetic
field. These waves are called longitudinal because when they
are propagative, the electric field is parallel to the wave vector.
They correspond to bulk plasmons: oscillations of the free
electron gas due to the pressure term. Since the divergence of
the electric field is not identically zero, there exists a charge
density inside the metal given by

ρ = ε0∇ · E. (16)

Equation (9) then yields the wave equation for the bulk
plasmons

∇(∇ · E) − 1

α
E = ∇2E − 1

α
E = 0, (17)

and the corresponding dispersion relation is

k2 = − 1

α
= 1

β2

(
ω2 − ω2

p

1 + χb

+ iγ ω

)
. (18)

An alternative way to write this dispersion relation is

ε‖ ≡ 1 + χb − ω2
p

ω2 + iγ ω − β2k2
= 0, (19)

which is the way previous works have taken χb into account14

through a so-called longitudinal permittivity. But the equation
governing the polarization Pf [Eq. (5)] cannot be deduced
from the longitudinal permittivity using a simple Fourier
transform,41,42 as has been previously pointed out.46

The dispersion relations, Eqs. (15) and (18), are plotted
in Fig. 2 for two cases of the nonlocal parameter β, for

the simplified case where ε = 1 − ω2
p

ω2 . For small β, the
longitudinal mode disperses very little and can be generally
ignored in wave propagation problems. When β is nonzero,
however, the longitudinal mode acquires dispersion and is
generally present at a given frequency of excitation. Above the
plasma frequency, both the transverse and longitudinal modes
are propagating, while below the plasma frequency both modes
decay exponentially. In considering boundary value problems,
it is clear that a wave incident on a half space filled with
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FIG. 2. (Color online) Dispersion relation for transverse waves
(thick lines) and bulk plasmons (thin lines) when (a) the nonlocality
is absent (β = 0) and (b) the nonlocality is important. The dashed
lines show the imaginary parts of the propagation constants for the
transverse and longitudinal waves, below the plasma frequency ωp.
When nonlocality is present, for a given ω two waves must be taken
into account.

a nonlocal, plasmonic medium will generally couple to both
types of waves. To avoid the system being underdetermined,
an additional boundary condition must be used as will be
discussed in the subsequent section.

Let us now consider a multilayered structure that could be
as simple as the single interface shown in Fig. 3, invariant in
two directions, here taken as x and y. The z axis is thus perpen-
dicular to any interface considered, as shown in Fig. 3. Without
any loss of generality, it is possible to assume solutions that are
translationally invariant along the y (out-of-plane) direction.
As shown in the Appendix, the system of equations (8) and (9)
can be split into two subsystems corresponding to s (electric
field polarized perpendicular to the plane of incidence) and
p (magnetic field polarized perpendicular to the plane of
incidence) polarizations. Moreover, we will assume from now
on that all the fields present an x dependence that varies as
eikx x (or, equivalently, we take the Fourier transform along the
x axis).

For the s polarization, ∇ × E = 0 yields Ey = 0, so that no
bulk plasmon can be excited. Nonlocality has then no impact
on this polarization, so that we will deal in the following with
p polarization only. Equation (14) then yields

∂2
z Hy = −(

ε k2
0 − k2

x

)
Hy, (20)

Dielectric

Metal

z

x

FIG. 3. A simple interface between a dielectric and a metal.

so that the magnetic field can be written

Hy = (Aeikzt z + B e−ikzt z) eikx x−iω t (21)

with kzt =
√

ε k2
0 − k2

x , where k0 = ω
c

. The Ex and Ez accom-
panying fields can be found using equations

Ex = 1

iωε0 ε
∂zHy, (22)

Ez = − 1

iωε0 ε
∂xHy. (23)

For longitudinal waves, the wave equation (17) becomes

∂2
z Ex =

(
k2
x + 1

α

)
Ex. (24)

For normal incidence (for kx = 0), depending on whether ω

is smaller or larger than ωp/
√

1 + χb, the bulk plasmon will
be respectively evanescent [�(α) > 0] or propagative [�(α) <

0]. In the visible range, we usually have ω < ωp/
√

1 + χb so
that the bulk plasmon is evanescent and the above equation
can be solved to yield

Ex = (C eκl z + D e−κl z) eikx x−iω t (25)

with

κ2
l = 1

β2

(
ω2

p

1 + χb

− ω2 − iγ ω

)
+ k2

x

= k2
x + ω2

p

β2

(
1

χf

+ 1

1 + χb

)
. (26)

The fact that longitudinal waves are curl free yields

Ez = 1

ikx

∂zEx, (27)

which allows determination of the contribution of the bulk
plasmon to Ez if needed.

IV. ADDITIONAL BOUNDARY CONDITIONS

The nonlocal nature of the metal results in the appearance of
a longitudinal bulk plasmon mode that can be excited from the
metal interface, in addition to the surface-localized plasmon
polariton. The well-known Maxwell’s boundary conditions
are not sufficient to uniquely define the amplitudes of these
independent waves. More specifically, for each metallic layer,
two new unknowns are introduced and must be resolved in
the solution of the electromagnetic boundary value problem.
To avoid dealing with an underdetermined problem then,
additional boundary conditions (ABCs) must be imposed at
the metal interface.

The issue of boundary conditions has been abundantly
discussed in the context of spatially dispersive crystals,
and a variety of different boundary conditions has been
proposed.44,47 In the context of the hydrodynamic model, the
choice of boundary conditions is much simpler,20,22 essentially
because fewer types of waves are involved. Two additional
boundary conditions are typically considered in the case of
an interface between a metal and a dielectric, when the
contribution of the bound electrons is overlooked: either
(i) Pz = 020,22 or (ii) the continuity of Ez.14,48 If the considered
dielectric is a vacuum, then these two conditions are equivalent.
Condition (i) can be justified because the polarization in the

045401-4



IMPACT OF NONLOCAL RESPONSE ON . . . PHYSICAL REVIEW B 87, 045401 (2013)

metal is due to actual currents; since the electrons are not
allowed to leave the metal, then the normal current must vanish
at the interface and also the polarization. Condition (ii) can
be justified by treating the interface as smooth for all fields,
including the normal component of the electric field.

In our description of the response of metals, the susceptibil-
ity attributed to bound electrons, χb, is considered purely local.
One might expect that the equation ∇ · D = 0 would impose
a supplementary condition (namely the continuity of Dz),
leaving no freedom in the choice of the boundary condition.
This is however not the case: In multilayered systems, the
continuity of Hy through an interface implies the continuity of
Dz, so that an additional boundary condition is still required.

The response of the metal in our description is partly the
response of a standard dielectric medium, so that there is no
reason to assume the continuity of Ez at the surface of the
metal. Condition (ii) thus appears very difficult to support
when the contribution of bound electrons is taken into account
as a local, polarizable medium.

The underlying physics20,22 behind condition (i), that free
electrons cannot escape the metal, does however not lead
here to Pz = 0 at the edge of the metal because not all the
polarization comes from actual currents in the free electron
gas. It is thus not reasonable to use boundary condition (i) for
the case when bound electrons contribute to the polarization
response.

It would be physically reasonable to consider that only the
polarization linked to actual current leaving the metal should
be zero at the interface between a metal and a dielectric. For
multilayered structures, this condition can be written

Pf z
= 0 (28)

at the interface as an additional boundary condition. We
underscore that this boundary condition is not equivalent to
conditions (i) and (ii) when the outside medium is vacuum.

In the case of an interface between two metals, again, condi-
tion (i) is hard to justify, but the interface obviously should not
be considered as impervious to free electrons. Instead, it would
sound to consider that the currents, and thus the polarization
Pf , should be continuous. This would actually provide the
two additional boundary conditions that are required for an
interface between two metals. Although we will not consider
here structures involving such an interface, we emphasize that
taking into account the contribution of bound electrons to the
response of metals seems to lead to unambiguous boundary
conditions based on physical reasoning.

V. REFLECTION FROM A METALLIC SURFACE

Let us now consider an incident plane wave coming from
above (z > 0) and propagating in a dielectric medium with
a permittivity εd , reflected by a metallic interface located at
z = 0, as shown in Fig. 3—the metal being characterized by
a permittivity ε. For p polarization, the magnetic field in the
dielectric region can be then written

Hy = (e−ikz z + r eikz z) eikx x−iω t , (29)

where kz = √
εd k2

0 − k2
x and k0 = ω

c
, while the electric field

along the x direction has the form

Ex = ikz

iωε0εd

(r eikz z − e−ikz z) eikx x−iω t . (30)

In the metal, the magnetic field can be written

Hy = Aeκt z eikx x−iω t , (31)

where κt =
√

k2
x − ε k2

0, and the electric field

Ex =
(

κt

iωε0ε
A eκt z + B eκl z

)
eikx x−iω t , (32)

Ez =
(

− ikx

iωε0ε
A eκt z + κl

ikx

B eκl z

)
eikx x−iω t . (33)

The magnetic field Hy and the x component of the electric
field Ex are continuous at z = 0 so that

1 + r = A, (34)

(r − 1)
ikz

εd

= κt

ε
A + iωε0 B. (35)

Since Pf z
= − 1

iω
∂xHy − ε0(1 + χb) Ez, the condition Pf z

=
0 in the metal at the interface can be written

ikx A

(
1

ε
− 1

1 + χb

)
= κl

ikx

iωε0 B. (36)

Finally A and B can be eliminated to yield

r =
ikz

εd
+ κt

ε
− �

ikz

εd
− κt

ε
+ �

, (37)

where

� = k2
x

κl

(
1

ε
− 1

1 + χb

)
. (38)

The reflection coefficient indicates that the bulk plasmon
is not excited at normal incidence for kx = 0 because in that
case only one component of the electric field is present in
the incident and reflected fields. When the angle of incidence
increases the excitation of the bulk plasmon is more and
more important because of the increasing Ez component. Of
course κl is increasing too, which means that the bulk plasmon
penetration is more shallow, but only slightly—so that the �

increases essentially as k2
x .

VI. SURFACE PLASMON

If the field is not propagative in the dielectric region, but
has the form

Hy = (C eκz z + D e−κz z) eikx x−iω t (39)

with κz = √
k2
x − εd k2

0 = −ikz, then it is meaningless to
define a reflection coefficient (37), but still we can write that

D

C
=

κz

εd
− κt

ε
+ �

κz

εd
+ κt

ε
− �

. (40)

The surface plasmon is a solution for which D �= 0 and
C = 0, thus corresponding to a pole of the left-hand side of
Eq. (40), and a zero of its denominator, so that the dispersion
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FIG. 4. Dispersion relation (ω as a function of kx) for a surface
plasmon at the interface between silver and air. The local description
(thick solid curve) can almost not be distinguished from the nonlocal
description (thick dashed curve, almost identical with the thick solid
curve). In order to illustrate the effect of nonlocality, we show here
(dotted line) the impact of an exaggerated nonlocality (β multiplied
by 10). The thin solid curve is ω = kx c.

relation can be written
κz

εd

+ κt

ε
= �. (41)

The larger the propagation constant kx , the larger � and thus
the larger the impact of nonlocality. However, for surface
plasmons, very large values of kx are difficult to reach
(typically, the maximum effective index is around 1.4 for
a silver-air interface) as shown in Fig. 4. The impact of
nonlocality on bare surface plasmons is thus very small. In
the following, we will see that for a metal-dielectric-metal
waveguide with a very thin dielectric layer, the impact of
nonlocality on the guided mode is much more important
because very large kx values can be reached whatever the
wavelength.

VII. THE IMPACT OF BOUNDARY CONDITIONS

The form of the reflection coefficient and of the dispersion
relation above clearly shows that � is the parameter controlling
the influence of the nonlocality on propagation phenomena.
Moreover, it makes manifest the consequences of a change in
the boundary conditions.

In the literature, the entire metal response is often attributed
to the free electrons, while the response of bound electrons
is neglected.20,22,48 When the bound electron response is
neglected, the dispersion relation of the bulk plasmon yields

κl =
√

k2
x + ω2

p

β2

(
1

χf

+ 1

)
(42)

instead of

κl =
√

k2
x + ω2

p

β2

(
1

χf

+ 1

1 + χb

)
, (43)

where a local contribution from bound electrons is assumed.14

TABLE I. Summary of the different descriptions of nonlocality.
The first two do not consider separately the contribution from the
bound electrons; the last three do. The last one is the one that is
preferred in this work.

Descr. κ2
l ABC �

1 k2
x + ω2

p

β2 ( 1
χf

+ 1) Pz(0) = 0 k2
x

κl
( 1

ε
− 1)

2 k2
x + ω2

p

β2 ( 1
χf

+ 1) Ez continuous k2
x

κl
( 1

ε
− 1

εd
)

3 k2
x + ω2

p

β2 ( 1
χf

+ 1
1+χb

) Pz = 0 k2
x

κl
( 1

ε
− 1)

4 k2
x + ω2

p

β2 ( 1
χf

+ 1
1+χb

) Ez continuous k2
x

κl
( 1

ε
− 1

εd
)

5 k2
x + ω2

p

β2 ( 1
χf

+ 1
1+χb

) Pf z
= 0 k2

x

κl
( 1

ε
− 1

1+χb
)

If the boundary condition with the dielectric is chosen to be
the continuity of the component of the electric field normal to
the interface, then we have

� = k2
x

κl

(
1

ε
− 1

εd

)
, (44)

where κl can be calculated using one of the above expressions,
depending on the description of the metal’s properties. When
the entire polarization Pz is chosen to vanish at the interface,
we have instead

� = k2
x

κl

(
1

ε
− 1

)
. (45)

In the following, we will investigate all the different
descriptions that are presented in Table I to show that, even
if they differ regarding the quantitative impact of nonlocality,
they all at least agree qualitatively.

VIII. METAL-DIELECTRIC-METAL WAVEGUIDE

While the impact of nonlocality can be considered minor for
the single interface problem above, nonlocal effects can be far
more evident in multilayer systems. In metallodielectric layers,
it is possible to reduce the thickness of layers to the nanometer
or even subnanometer scale; modes that propagate in such
layers can be significantly confined, to the point where local
models are forced to break down. For this reason, multilayer
systems and structures based on multilayers can be useful as an
experimental tool to investigate and measure nonlocal effects.

In this section, we consider the case of a dielectric with a
permittivity εd sandwiched between two metallic surfaces (as
shown in Fig. 5) and study more thoroughly the influence of
the nonlocality of the metal on the first even guided mode (the
fundamental mode).

A. Dispersion relation

We consider here a symmetric waveguide, the metal being
the same on both sides of the dielectric layer. The magnetic
field in the dielectric can be written as

Hy = (C eκz z + D e−κz z) eikx x−iω t . (46)
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−h/2

h/2

z

x

Metal

Dielectric

Metal

FIG. 5. Metallic waveguide of width h.

As we have seen in the previous section, at z = − h
2 , we have

D eκz
h
2

C e−κz
h
2

=
κz

εd
− κt

ε
+ �

κz

εd
+ κt

ε
− �

, (47)

while for z = + h
2 (the z axis has to be reversed, which means

C and D should be exchanged)

C eκz
h
2

D e−κz
h
2

=
κz

εd
− κt

ε
+ �

κz

εd
+ κt

ε
− �

. (48)

Combining these two equations, we get

e2κz h =
(

κz

εd
− κt

ε
+ �

κz

εd
+ κt

ε
− �

)2

= r2, (49)

and finally either the mode is symmetrical (C = D) and we
have r = eκz h which can be written

κz

εd

tanh
κz h

2
+ κt

ε
= �, (50)

or the mode is antisymmetrical (C = −D), which means r =
−eκz h and finally

κz

εd

coth
κz h

2
+ κt

ε
= �. (51)

B. Nature of the guided modes

We first discuss the nature of the guided modes in a thin
metallic waveguide. There are two situations that are clear and
for which the guided modes of the structure have well-posed
definitions:1

(1) The perfect metallic waveguide, which supports a
fundamental mode that is flat and that has no cutoff (it is
supported whatever the thickness of the metallic waveguide).
In addition, we have analytical expressions for the propagation
constant and field profile of all the modes. For the fundamental
mode, we have

k2
x = εd k2

0 . (52)

(2) The plasmonic (i.e., wide) metallic waveguide, which
supports coupled surface plasmons.1 At a given frequency and
for a wide enough guide, the even and the odd surface plasmon

Re(k /k )x 0

x
Im

(k
/k

) 0

ε=−100

ε=−2000

ε=−100

ε=−10

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2

FIG. 6. Trajectory in the complex plane of the quantity kx

k0
for

three different waveguided modes (solid line: first even mode;
dashed line: first odd mode; dotted line: second even mode) when
the permittivity of the metal goes from ε = −10 + i (circles) to
ε = −2000 + i, for a thickness of the waveguide of 500 nm and
a dielectric with a 1.58 optical index. The intermediate value of
−100 + i is indicated on the curves.

modes present propagation constants that can be arbitrarily
close to the propagation constant of the surface plasmon

kx = k0

√
εd ε(ω)

εd + ε(ω)
, (53)

even for complex values of ε(ω).
For the case of a thin (a few nanometers) waveguide we

seek the best description to retain for the only guided mode
found.

Consider the case of coupled surface plasmons first. We
can approach the condition of a perfect metallic waveguide
by making the permittivity of the metal change such that its
real part tends towards infinity. As can be seen in Fig. 6 the
odd mode tends towards the fundamental mode but the field
inside the dielectric (index of 1.58) always stays evanescent.
The even mode tends towards the first even mode of the perfect
metallic waveguide and the field becomes propagative at some
point (where the real part of the propagation constant becomes
smaller than the optical index of the dielectric). The point
at which the field of the even mode becomes propagative
could even be defined as a limit between the “coupled surface
plasmon” and the “perfect metallic waveguide” pictures.

Now consider starting with a large waveguide (500 nm)
and decreasing its width down to a few nanometers. As can
be seen in Fig. 7, the even mode presents an increasing
propagation constant. The odd mode, by contrast, presents
a decreasing propagation constant—the field in the dielectric
even becomes propagative as in the previous case. For thin
layers (smaller than 128 nm here) this mode presents a very
large imaginary part and a very small real part: It can be
considered as evanescent in the x direction even if the cutoff
cannot be defined precisely.

For a small dielectric thickness, the waveguide thus behaves
much more like a perfect metallic waveguide (a fundamental
mode with no cutoff, no propagative even mode) and except
for the fact that the field of the first even mode is evanescent
in the z direction, has not much to do with the coupled surface
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Im
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/k

)
x

0

Re(k /k )x 0

h=128 nm

h=128 nm

h=50 nm
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0
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0.4

0.5

0.6

0.7

0.8
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FIG. 7. Trajectory in the complex plane of the quantity kx

k0
for

three different waveguided modes (solid line: first even mode; dashed
line: first odd mode; dotted line: second even mode) when the width
of the metal goes from 380 nm (circles) to 10 nm. The permittivity
of the metal is taken equal to the permittivity of gold at 608 nm, ε �
−10.01 + 1.44i. Intermediate thicknesses of 221 nm (when the real
part of the index of the odd mode becomes smaller than 1.58, so that
the coupled plasmon picture becomes less relevant), 128 nm (when
the odd mode can be considered nonpropagative, and the coupled
plasmon picture is not relevant any more), and 50 nm are indicated
on the curves.

plasmons situation. This is why we refer to this mode as the
fundamental mode of the waveguide.

This mode is however sometimes called the gap plasmon in
the literature,35 a term that underscores the differences between
the actual mode and the fundamental mode of a perfect metallic
waveguide.

C. Nonlocal effects

When the waveguide becomes extremely thin, as can be
seen in Fig. 7, the effective index (and thus kx) of the
fundamental mode [with a dispersion relation given by (50)]
can become arbitrarily large. When kx is larger, � is larger,
which means that the nonlocality has a much larger impact
on the mode’s propagation constant. It is possible to compare
(see Figs. 8 and 9 for a waveguide filled with a dielectric with
a 1.58 optical index) the local effective index as a function of
the waveguide’s width with a local and with a nonlocal theory.
Obviously the impact of nonlocality is limited for h > 5 nm
but it can become very important under that threshold. The
parameters we have considered for gold are given in Ref. 39
and β = 1.27 × 106 m/s.16,25

Since different descriptions of nonlocality exist in the
literature, we have compared our approach to the other
descriptions available (different boundary conditions, as well
as considering that the whole response of the medium is
nonlocal or not, as described in Sec. VII and summarized
in Table I).

The hydrodynamic model is often said to exaggerate
nonlocal effects. It could be expected that taking into account
the response of the bound electrons, which can be considered
as local, would lower the impact of nonlocality on the guided
mode compared to when the whole response of the metal
is considered nonlocal. Figures 8 and 9 show that this is

 0
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FIG. 8. Effective index of the guided mode at 600 nm, as a
function of the dielectric width h. The dispersion relations are shown
for different descriptions (see Table I): the completely local case
(thin black curve, top), Pz(0) = 0 (description 1, dash-dotted line)
and Ez continuous (description 2, dashed line) with no identified
contribution of the bound electrons, and descriptions separating the
contributions of bound and free electrons, with Pz = 0 (description 3,
dash-double-dotted line), a continuous Ez (description 4, thin dashed
line), and finally our description (description 5, thick solid curve),
which is preferred in this work.

paradoxically not the case when the boundary condition
that we consider as being the most physical (Pf z

= 0) is
not chosen. Considering a separate response of the bound
electrons actually lowers the effective plasma frequency, as
explained above, which leads to a deeper penetration of the
field corresponding to the bulk plasmons, which may in turn
increase the importance of this field (depending, of course, on
the boundary conditions).

When the condition we propose is used, the impact of
nonlocality is even lower than when considering a completely
nonlocal response of the metal and using Pz = 0. This actually
makes us think the boundary condition that we propose here
is not only the most sound physically, but it may even yield a
more accurate estimate of the nonlocal effects.
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FIG. 9. Same as Fig. 8 except for the log scale.
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50 nm

d=50 nm
200 nm

h=3 nm

FIG. 10. Strips (rods with a 50 nm × 50 nm section) are separated
from the metallic film by a 3 nm thick dielectric with an optical index
of 1.58. The structure considered here is periodic, with a 200 nm
period.

IX. CAVITY RESONANCES FOR METALLIC STRIPS
COUPLED TO A METALLIC FILM

Many structures and phenomena rely on the fundamental
mode of the metallic waveguide such as the enhanced trans-
mission by subwavelength slit arrays,49–51 highly absorbent
gratings,52 or strip nanoantennas,33–36 to mention a few. The
latter are patches that are invariant perpendicularly to the plane
(see Fig. 10), the mode that is guided between a strip and the
metallic film, whose dispersion relation is given by (50) as
long as the patch is thick enough, if reflected by the edges
of the strip. The reflection coefficient r of the mode can be
computed easily50 using a Fourier modal method.53,54 When
the strip is wide enough, Fabry-Perot resonances may occur.35

The local energy density (and hence the absorption) should
be proportional to the square of the field amplitude, given by
a Fabry-Perot formula,50 yielding

|H|2 =
∣∣∣∣ 1

1 − r2 e2i kx d

∣∣∣∣
2

. (54)

This model allows the accurate prediction of the position
of the resonance when a purely local response of the metal
is assumed, as shown in Fig. 11: The resonance predicted
using model (54) [kx being computed using dispersion relation
Eq. (50) with � = 0] occurs exactly where there is a dip in the
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FIG. 11. Bottom: Reflection spectrum according to local (RCWA,
dashed line) and nonlocal (COMSOL, solid line) simulations. Top:
Model (54) for the field intensity under the strips for the local (dashed
line) and nonlocal (solid line) theory. The agreement between the
simulations and the model are in excellent agreement for the local as
well as for the nonlocal theory.

reflectance of the nanorods’ covered surface. This confirms the
physical analysis of the structure and that a one-mode model
is sufficient to describe the resonances.

As we have shown above, when nonlocality is taken into
account, the propagation constant kx of the guided mode differs
from the purely local case. That is why the resonances of the
nanorods can be expected to be very sensitive to nonlocality
when the thickness of the spacer is typically smaller than
5 nm.

Full COMSOL simulations based on the hydrodynamical
model with the boundary conditions that we suggest in this
work (description 5 in Table I) show that the resonance of the
structure is largely blueshifted compared to the purely local
simulations. This is completely accounted for by model (54)
when using a propagation constant kx computed using the
dispersion relation (50) and keeping the same coefficient
reflection r as for the local case. This proves that nonlocality
intervenes almost only through the change of the propagation
constant of the guided mode, and not at all through a change
of the reflection coefficient. Such structures, or structures
presenting a very similar behavior,17 are obviously a way to
assess experimentally the effects of nonlocality on the guided
mode of the metallic waveguide with a good accuracy.

X. CONCLUSION

We have proposed in this work an improvement of the
hydrodynamic model by clearly separating the nonlocal
response of the free electrons and the response of the bound
electrons, considered as local.29 Such a distinction makes the
discussion about the additional boundary conditions much
more clear, leaving nothing but a single condition that seems
physically sound: no current of free electrons leaving the
metal. We have shown that this condition leads to a lower
impact of the nonlocality than many other descriptions based
on the hydrodynamic model. This description may thus answer
two main concerns regarding this kind of model compared to
Feibelman’s approach:26,28 the uncertainty about the boundary
conditions and a tendency to exaggerate the effects of
nonlocality. Furthermore, recent experimental results have
shown that the hydrodynamical model can describe nonlocal
effects very accurately.16 Given the reduced complexity of
the hydrodynamic model relative to full quantum and other
microscopic models of electron response, it is of continued
interest to further explore the accuracy of these models in the
context of plasmonic nanostructures.

Following previous work on slot waveguides that support
gap plasmons,31 we have shown that the slow light regime
reached when the waveguide is only a few nanometers thick
is responsible for a large enhancement of the nonlocal effects.
Using these results, we have studied the impact of nonlocality
on patch nanoantennas and shown that it should be easy to
detect, paving the way for future experiments.

Our analysis is of relevance to numerous nanophotonic de-
vices, including metallodielectric waveguides, nanoantennas,
and nanocavities, which rely on the excitation of gap plasmons
on very thin, conducting layers for their operation.32–36 These
resonant structures have a variety of diverse applications,
for instance, as highly efficient concentrators and absorbers
of light.17,52 The description of conductors we provide can
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also prove useful when testing the limits of the classical
theory for describing structures containing metals or doped
semiconductors, for which the response of the bound electrons
is strong.

As has been once more shown here, the hydrodynamic
model yields analytical results that help to understand the
underlying physics of nonlocality.24,48 It presents the supple-
mentary advantage of being easy to use in simulations with
complex geometries.16 The analytical calculations we have
presented, beyond the clarification they may bring,41,42 are
thus a first step towards the extension of widely used numerical
methods53–55 to account accurately for nonlocality.

APPENDIX

Let us write Eqs. (8) and (9) within the metal in Cartesian
coordinates in the case where the fields do not depend on y:

−∂zEy = iω μ0 Hx, (A1)

∂zEx − ∂xEz = iω μ0 Hy, (A2)

∂xEy = iω μ0 Hz, (A3)

−∂zHy = −iωε0ε
(
Ex − α∂2

xEx − α∂x∂zEz

)
, (A4)

∂zHx − ∂xHz = −iωε0εEy, (A5)

∂xHy = −iωε0ε
(
Ez − α∂2

z Ez − α∂x∂zEx

)
. (A6)

This system of equations can be split into two subsystems
corresponding to s (electric field polarized perpendicular
to the plane of incidence) and p (magnetic field polarized
perpendicular to the plane of incidence) polarizations. The
s subsystem is identical to the subsystem without taking
nonlocality into account, because of the simple form of
Eq. (A5). Nonlocality has then no impact on this polarization,
so that we will deal in the following with p polarization only.

The subsystem concerning the p polarization can be written

∂zEx − ∂xEz = iω μ0 Hy, (A7)

−α∂2
xEx + Ex − α∂x∂zEz = 1

iωε0 ε
∂zHy, (A8)

−α∂2
z Ez + Ez − α∂x∂zEx = − 1

iωε0 ε
∂xHy. (A9)

By applying the operator −α∂x∂z to Eq. (A9), operator 1 − α∂2
z

to Eq. (A8), and subtracting one resulting equation from the
other, one gets

[
1 − α

(
∂2
x + ∂2

z

)]
Ex =

[
1 − α

(
∂2
x + ∂2

z

)]
iωε0 ε

∂zHy. (A10)

Repeating the same procedure, but applying 1 − α∂2
x to

Eq. (A9), −α∂x∂z to Eq. (A8), and subtracting the resulting
equation from the other we obtain the decoupled system of
equations

∂zEx − ∂xEz = iω μ0 Hy, (A11)

[
1 − α

(
∂2
x + ∂2

z

)]
Ex =

[
1 − α

(
∂2
x + ∂2

z

)]
iωε0 ε

∂zHy, (A12)

[
1 − α

(
∂2
x + ∂2

z

)]
Ez = −

[
1 − α

(
∂2
x + ∂2

z

)]
iωε0 ε

∂xHy. (A13)

We can apply the inverse of the differential operator 1 −
α(∂2

x + ∂2
z ) to both sides of the equations to obtain the classical

system

∂zEx − ∂xEz = iω μ0 Hy, (A14)

Ex = 1

iωε0 ε
∂zHy, (A15)

Ez = − 1

iωε0 ε
∂xHy. (A16)

This system is identical with that corresponding to a purely
local response of the metal and its solution satisfies ∇ · E = 0.
The wave that it describes is referred to as the transverse wave
because when it is propagative, the electric field is orthogonal
to the propagation vector. But to this solution should be added
any solution for which

−α
(
∂2
x + ∂2

z

)
Ex + Ex = 0, (A17)

−α
(
∂2
x + ∂2

z

)
Ez + Ez = 0, (A18)

−α
(
∂2
x + ∂2

z

)
Hy + Hy = 0, (A19)

because it would also be a solution of system (A11). Us-
ing (A17) along with (A8) and (A7), it is not difficult to show
that Hy = 0 so that this solution satisfies

∂zEx = ∂xEz. (A20)
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