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We provide a numerical tool to quantitatively study the impact of nonlocality arising from free electrons in metals
on the optical properties of metallo-dielectric multilayers. We found that scattering matrices are particularly well
suited to take into account the electron response through the application of the hydrodynamic model. Though
effects due to nonlocality are, in general, quite small, they, nevertheless, can be important for very thin (typically
below 10 nm) metallic layers, as in those used in structures characterized by exotic dispersion curves. Such struc-
tures include those with a negative refractive index, hyperbolic metamaterials, and near-zero index materials.
Higher wave vectors mean larger nonlocal effects, so that it is not surprising that subwavelength imaging capa-
bilities of hyperbolic metamaterials are found to be sensitive to nonlocal effects. We find in all cases that the in-
clusion of nonlocal effects leads to at least a 5% higher transmission through the considered structure. © 2015

Optical Society of America
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1. INTRODUCTION

Metallo-dielectric multilayers [1] are a class of metamaterials
that have attracted considerable attention because they are
relatively easy to fabricate at infrared and visible wavelengths,
and can support a wide scope of exotic behavior, including neg-
ative refraction and hyperbolic dispersion [2–8]. The unique
properties of these multilayer structures can potentially play
a role in applications, such as thermal radiation control [9–11]
and subwavelength imaging [2,5,12–19]. To date, most of the
analyses assume the local approximation for the electron re-
sponse of the metal. However, as the metal layers become very
thin and are closely spaced together, it can be expected that the
local response model will no longer be applicable, and must be
substituted with a nonlocal or full quantum mechanical model.
Recent experiments [20] have indicated that there may be a
length scale where the local approximation fails, but where
the semiclassical, hydrodynamic model [21,22] for the free
electron response is valid. The hydrodynamic model, while
considerably approximate with respect to a full-quantum treat-
ment, provides a more tractable model for analytic and semi-
analytic calculations, especially for larger structures, and, thus,
is an attractive approach for estimating the impact of nonlocal-
ity in various scenarios.

Over the last few years, there have been diverging opinions
as to whether structures composed of very thin metallic and
dielectric layers are sensitive to the intrinsic nonlocality of met-
als [23–25]. Hoping to help tackle this problem, we provide
numerical tools to take into account nonlocal effects when
calculating optical properties of any kind of metallo-dielectric
multilayer. Our description relies on the hydrodynamic model
[21,22], which has been shown to provide quantitative agree-
ment for the plasmon resonance shifts observed on a system of
gold nanospheres placed at sub-nanometer distances from a
gold film [20]. This model was subsequently modified to take
into account interband transitions [26].

In this paper, we present a scattering matrix formalism
for metallo-dielectric multilayers, incorporating the effects of
nonlocality through the use of the hydrodynamic model. Our
formalism makes it easy to choose different boundary conditions
[26], and, hence, to retrieve all previous models [25,27,28] that
neglect interband transitions. Using these tools, we show that the
impact of nonlocality on a recently published optical negative
index (n � −1) lens design based on metallo-dielectric multi-
layers [8] can be observed, although very moderate. By contrast,
we find that nonlocal effects cannot be neglected for structures in
the canalization (or channeling) regime [13]; moreover, for very
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thin metallic layers, the bulk plasmon acts like a supplementary
energy channel, allowing light to tunnel through metallic layers.

2. HYDRODYNAMICAL MODEL FRAMEWORK

Within the framework of the hydrodynamical model, conduc-
tion electrons are treated as gas constrained within the boun-
daries of the metal structure. Interactions between electrons are
taken into account in an approximate manner through the in-
troduction of a pressure term that includes the quantum pres-
sure. The hydrodynamical equations are linearized [29] to yield
a relation between the electric field and the polarization of the
metal linked to the free electron displacements. The inclusion
of the pressure terms in the hydrodynamic equations introduces
a spatial derivative into the linearized equation of motion, and
the response of the electron gas is, thus, nonlocal [30].

The origin of the hydrodynamic model can be traced to
the physics of plasmas. It has been used to describe metallic
structures since the 1960s and onward [31,32], raising many
questions along the way as to the proper treatment of a metal-
dielectric interface. Thus, the model suffered from many un-
certainties, but was nonetheless widely used [33–36] and
discussed [21,22,37]; then it was somewhat abandoned, likely
because of the lack of any clear experimental evidence for non-
local effects. It is clear now, for instance, that nonlocality has
almost no impact on the surface plasmons of a thin metal film
[26], although the shift in the plasmon resonance wavelength of
prism-coupled films was often considered as a test for nonlocal
theories [22].

A variety of other approaches has been proposed to take
nonlocality into account, including the classical Random
Phase Approximation [31,34,38,39] or Feibelman’s model
[40,41]. It is interesting to note that an essential improvement
to the latter approach concerns the manner in which the con-
tribution from bound electrons is taken into account [42].
However, this model is known for not having issues to take
bulk absorption into account [39].

More modern approaches to assessing the electron response
rely on the density functional theory (DFT), considered one
of the most accurate tools to incorporate the effects of quantum
mechanical interactions on resonances and other properties
of metallic nanoparticles and nanoclusters [43,44]. These
methods, while being very accurate, cannot be applied to sys-
tems that exceed a few thousands of electrons. As a conse-
quence, the propagation of waves is usually not taken directly
into account [45], which may be a problem for structures sup-
porting gap plasmons and similarly confined modes.

The hydrodynamical model has attracted increasing atten-
tion because of advances in nanofabrication and measurement
techniques that allow structures to be designed and studied in
the regime where nonlocal response is expected to dominate
[46–48]. In general, the hydrodynamic model is attractive
because (1) its predictions are in good agreement with experi-
ments for which nonlocality clearly plays a role [20], and well
before other quantum effects kick in [49,50]; (2) it yields ana-
lytical results [26,51] and provides deeper insight into the phys-
ics of nonlocality; and (3) it is easy to implement in numerical
simulations [52]. In addition, the uncertainties about the boun-
dary conditions are lifted when the contribution of the bound

and free electrons are clearly distinguished [26] and its well-
known tendency to overestimate the impact of nonlocality is
lessened. This is especially relevant for very short wavelengths,
when the permittivity is small and when the Drude term is of
the order of the interband transition contribution. Thus, for
the reasons above, the model has been used to study the en-
hancement by plasmonics tips [53] and dimers [54], hyperbolic
metamaterials [25,28], subwavelength imaging by a silver slab
[23,48], and gap plasmon propagation [26,48,55].

Finally, it should be stressed that, even if the model was
found to be quite accurate [24] when compared to other ap-
proaches, it still has to be backed by more fundamental studies
[44], comparisons to experiments [56], or even more sophisti-
cated hydrodynamic models [30].

We will in this section briefly remind the reader of the
fundamental physics of nonlocality within the framework of
the hydrodynamical model when the contribution of bound
electrons is taken into account. A detailed derivation of these
equations can be found in [26].

A. Longitudinal Waves

Let us consider a multilayer as represented in Fig. 1. Nonlocal
effects are expected to occur for p-polarization only (sometimes
referred to as TM), so that we will from now on consider this
polarization only. We assume the structure is illuminated with
a plane wave characterized by the angular frequency ω (time
dependency e−iωt ) and a wave vector whose component along
the x axis is denoted kx .

In the framework of the hydrodynamic model [46,57], the
electric and magnetic fields satisfy Maxwell’s equations:

∇ × E � iωμ0H; (1)

∇ ×H � −iωϵ0�1� χb�E� Pf ; (2)

where the effective polarization of the medium is linked to the
electric field by the fundamental relation [26]

Pf � ϵ0 · ω2
p

ω2 � iγω

�
E − �1� χb�

β2

ω2
p
∇�∇ · E�

�
: (3)

These equations can be easily solved to yield an analytical
form for the fields.

Fig. 1. Diagram of an infinitely periodic metallo-dielectric struc-
ture. The gray areas represent the metallic layers.
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In the j-th dielectric layer, having a relative permittivity ϵd,
the magnetic and electric fields can be written

Hyd � �Ajeikd z � Bje−ikd z�ei�kxx−ωt�; (4)

Ex �
kd

ωε0εd
�Ajeikd z − Bje−ikd z�ei�kxx−ωt�; (5)

Ez �
−kx

ωε0εd
�Ajeikd z � Bje−ikd z�ei�kxx−ωt�; (6)

with kd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εd k20 − k

2
x

p
and k0 � ω

c . We choose the branch cut
for the square root to be on the negative imaginary axis [58].
This peculiar choice guarantees that the imaginary part of the
square root is positive. While this has no impact on the follow-
ing analytical calculations, such a choice is critical for the
numerical stability of the method as explained in [59].

Inside the j-th metallic layer of permittivity εm, in the
framework of the hydrodynamical model, two types of waves
are supported: the transverse, for which ∇ · E � 0, and the
longitudinal waves for which ∇ × E � 0, and, consequently,
H � 0. The transverse wave solutions can be found from the
consideration of the two Maxwell curl equations: if ∇ · E � 0,
Pf � 0 and equations Eqs. (1) and (2) reduce to the usual,
local, curl equations:

∂zEx − ∂xEz � iωμ0Hy; (7)

Ex �
1

iωε0εm
∂zH y; (8)

Ez � −
1

iωε0εm
∂xHy; (9)

so that, inside the metal, they can be written

Hym � �Aje−κt z � Bjeκt z�ei�kxx−ωt�; (10)

Et
x �

iκt
ωε0εm

�Aje−κt z − Bjeκt z�ei�kxx−ωt�; (11)

Et
z �

−kx
ωε0εm

�Aje−κt z � Bjeκt z�ei�kxx−ωt�; (12)

where κt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x − εmk20

p
. The branch cut in that case must be

chosen on the negative real axis for numerical stability. This is
important here, as εm usually presents an important imaginary
part [60]. The longitudinal wave corresponds to a bulk plas-
mon supported by the free electron gas, with no accompanying
magnetic field. Because the electric field corresponding to the
longitudinal mode is thus curl free, it satisfies

∂zEx � ∂xEz ; (13)

and, finally, can be written (the first equation below being the
definition of Cj and Dj)

El
x � 1

ωε0
�Cje−κlz � Djeκlz��ei�kxx−ωt�; (14)

El
z � −κl

ikxωε0
�Cje−κlz − Djeκlz�ei�kxx−ωt�; (15)

with

κl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x �

ω2
p

β2

�
1

χf
� 1

1� χb

�s
; (16)

where ωp is the plasma frequency of the considered metal, and
χf and χb are the susceptibilities associated with the free and
bound electrons, respectively (ϵm � 1� χb � χf ). These three
parameters are determined through careful fits of the metal
permittivity [60]. The data on which these fits rely are obtained
in situations where nonlocality plays no role, and clearly dis-
tinguish the free electron response from the interband transi-
tions in the framework of an intrinsically local description.
Then nonlocality can be taken into account through the param-
eter β, which is, however, not so easy to estimate. This constant
can account for both Coulomb interaction and quantum pres-
sure through which free electrons interact strongly in the metal
[29,30], and is proportional to the Fermi velocity, even if the
theoretical value of the proportionality coefficient depends on
the model that is chosen. The recent experimental results
on film-coupled nanoparticles show that a value somewhat
smaller than the Fermi velocity is a good estimate. Since gold
and silver present very close Fermi velocities, we take here
β � 1.35 × 106 m∕s for both metals [20,46].

B. Additional Boundary Conditions

At the boundary between a metal and a dielectric, an additional
boundary condition is needed to determine to what extent the
longitudinal wave is excited. Many different boundary condi-
tions have been used in the past, but it becomes more and more
widespread to use the fact that the normal component of the
current should be continuous, as very clearly discussed else-
where [28]. This leads us to write here that, at the interface
between a metal and a dielectric, the normal polarization has
to vanish: Pf z � 0, since iωP � j [29]. This is imposed by the
conservation of charges and seems to be the only physical
choice when the contribution of the bound electrons is distin-
guished from the response of the free ones [26]. This distinc-
tion is pointless in the case of the Drude model, but crucial
when studying nonlocality; it can be done accurately when
based on extensive data and careful fits [60]. Separating the
different contributions, but using a less physical boundary
condition [51,53], can lead to an exaggeration of the nonlocal
effects [26]. We emphasize that this combination of a clear sep-
aration between the different electronic responses and the use
of the boundary conditions that physically derive from this
choice, to the best of our knowledge, has never been done
in previous works on multilayers [25,27,28,61].

For the fields that are inside the metal, the boundary con-
dition on the polarization can be written on the interface:

Pf z
� −

1

iω
∂xHy − ϵ0�1� χb�Ez � 0; (17)

where, of course, E � Et � El. Using Eq. (9), the previous
condition can also be written

El
z � κl

ωϵ0kx
ΩHy; (18)

with
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Ω � k2x
κl

�
1

ϵ
−

1

1� χb

�
: (19)

Considering different boundary conditions, as done else-
where, would only lead to slightly different expressions for
κl and Ω [26].

3. SCATTERING MATRIX ALGORITHM

Metallo-dielectric multilayers are of heightened interest in
many metamaterial configurations for their unique dispersion
characteristics. While a fully isotropic negative index and other
novel metamaterial media are difficult to realize at visible and
infrared wavelengths, anisotropic media composing alternating
metal/dielectric layers can be readily fabricated and can often
approximate the desired wave propagation effects. In particular,
one striking property that can be achieved in metallo-dielectric
multilayers is hyperbolic dispersion [62,63]. Hyperbolic
metamaterials are compelling because the hyperbolic dispersion
relation allows evanescent waves emitted by a source to be con-
verted to propagating waves. This effect can be used to achieve
subwavelength imaging [13,15,18,19,64,65], projection of
near-field information to far-field [5,14], and super-Planckian
thermal emission [9,11]. The dispersion relation for infinitely
periodic metallo-dielectric multilayers [27,61] makes it possible
to retrieve very important parameters, such as the effective in-
dex of the structure [19]. It is, however, not sufficient, because
it does not give any information on the reflection coefficients
on the structure for the incoming field, or inside the structure
for the Bloch modes. We underline that, even for structures
with simple patterns, the first and the last layer are usually made
of the same material, thus limiting the insight the dispersion
relation can provide; it does not give access to the reflection
coefficient [25]. Furthermore, more complex patterns have
recently attracted a lot of attention [8,66], for which the
dispersion relation has no analytical expression. For these rea-
sons, a systematic way for calculating the reflection coefficient
of a metallo-dielectric structure and the field inside any layer is
required. This is all the more reason that cavity resonances in
metallo-dielectric layers [67] may complicate the global picture
given by the dispersion curves.

A transfer matrix method was proposed in the 1980s [27],
but it is not simple to use. As a dielectric and a metallic layer
lead to transfer matrices with different sizes, they cannot simply
be multiplied, so that this technique has been used to study
infinite multilayers of two different nonlocal metals [61]. In
addition, transfer matrices are not expected to be numerically
stable for metallo-dielectric multilayers below the plasma fre-
quency when the waves are evanescent [59]. As we will see in
this section, the scattering matrices are an elegant way to take
nonlocality into account, because they can be combined very
easily. In addition, they are numerically perfectly stable so that
they constitute a natural choice. Our method has been vali-
dated by comparison with full Comsol [68] simulations, in
which a customized implementation of the full hydrodynamic
equation was included [46,69].

A. Layer Matrices

Let us consider a layer j whose interfaces are located at z � zj
and z � zj�1. The thickness of the layer is hj � zj − zj�1. It is

convenient to introduce here the coefficients A�
j and B�

j ,
which are defined in a dielectric layer by

Hy � �A�
j e

ikjz �z−zj� � B�
j e

−ikjz �z−zj��ei�kxx−ωt�; (20)

� �A−
j e

ikjz �z−zj�1� � B−
j e

−ikjz �z−zj�1��ei�kxx−ωt�; (21)

with kjz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εjk20 − k

2
x

q
, εj being the relative permittivity of the

dielectric medium. Using Maxwell’s equations for p-polarization
Eq. (9), the electric field (Ex , Ez) can be calculated easily.

This leads to introducing a scattering matrix for a dielectric
layer that is written�

A�
j

B−
j

�
�

�
0 eik

j
z hj

eik
j
z hj 0

��
B�
j

A−
j

�
: (22)

Inside a metallic layer, coefficients can be defined similarly
for the transversal wave as

Hy � �A�
j e

−κt �z−zj� � B�
j e

κt �z−zj��ei�kxx−ωt�; (23)

� �A−
j e

−κt �z−zj�1� � B�
j e

κt �z−zj�1��ei�kxx−ωt�; (24)

and the corresponding electric field can be determined using
Eq. (9). Taking the longitudinal wave into account leads to
introducing coefficients C�

j and D�
j :

El
x � 1

ωε0
�C�

j e
−κl�z−zj� � D�

j e
κl�z−zj��ei�kxx−ωt�; (25)

� 1

ωε0
�C−

j e
−κl�z−zj�1� � D−

j e
κl�z−zj�1��ei�kxx−ωt�: (26)

This leads to a scattering matrix for a metallic layer that is
written2

664
A�
j

C�
j

B−
j

D−
j

3
775 �

2
664

0 0 e−κt hj 0
0 0 0 e−κlhj

e−κt hj 0 0 0
0 e−κlhj 0 0

3
775
2
664
B�
j

D�
j

A−
j

C−
j

3
775: (27)

B. Dielectric to Metal Scattering Matrix

We assume here that medium j is dielectric, while medium
j� 1 is metallic. At their interfaces, the magnetic field Hy
is continuous, as is Ex , which can be calculated using Eq. (8).
A supplementary condition inside the metal is given by
Eq. (18). A straightforward calculation shows that this leads
to the following conditions on the coefficients:

A−
j � B−

j � A�
j�1 � B�

j�1; (28)

kjz
ϵj
�A−

j − B−
j � �

iκj�1
t

ϵj�1

�A�
j�1 − B

�
j�1� � C�

j�1 � D�
j�1; (29)

D�
j�1 − C

�
j�1 � iΩ�A�

j�1 � B�
j�1�: (30)

Rearranging these equations, a scattering matrix Sdm for the
dielectric-metal interface can be written so that2

4 A−
j

B�
j�1

D�
j�1

3
5 � Sdm

2
4 B−

j

A�
j�1

C�
j�1

3
5; (31)

where Sdm is equal to
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α

2
6664

kjz
ϵj
− iκj�1

t
ϵj�1

� iΩ 2 iκj�1
t

ϵj�1
2

2 kjz
εj

iκj�1
t

ϵj�1
− kjz

ϵj
� iΩ 2

2iΩ kjz
ϵj

2iΩ iκj�1
t

ϵj�1

kjz
ϵj
� iκj�1

t
ϵj�1

� iΩ

3
7775; �32�

and

α � 1

kjz
ϵj
� iκj�1

t
ϵj�1

− iΩ
: (33)

C. Metal to Dielectric Scattering Matrix

Similarly, at the interface between a metal (upper layer j) and a
dielectric (lower layer j� 1), the boundary conditions lead to
the following equations:

A−
j � B−

j � A�
j�1 � B�

j�1; (34)

iκjt
ϵj

�A−
i − B−

i � � C−
j � D−

j �
kj�1
z

εj�1

�A�
j�1 − B

�
j�1�; (35)

D−
j − C−

j � iΩ�A−
j � B−

j �; (36)

which, once they have been re-arranged, become a matrix Smd ,2
4 A−

j
C−

j

B�
j�1

3
5 � Smd

2
4 B−

j
D−

j

A�
j�1

3
5; (37)

where Sdm can be written

α 0

2
6664

iκjt
ϵj
− kj�1

z
ϵj�1

� iΩ −2 2 kj�1
z
ϵj�1

−2iΩ iκjt
ϵj

iκjt
ϵj
� kj�1

z
ϵj�1

� iΩ −2iΩ kj�1
z
ϵj�1

2b−i −2 kj�1
z
ϵj�1

− iκjt
ϵj
� iΩ

3
7775; �38�

with

α 0 � 1

iκjt
ϵj
� kj�1

z
ϵj�1

− iΩ
: (39)

D. Cascading Method

Now that scattering matrices have been defined for all kinds of
interfaces, they have to be combined through a cascading method.
Here, the scattering matrices are all square matrices, but they may
have more than two lines, so that the usual cascading algorithm
cannot be used. Instead, one has to rely on the cascading algo-
rithm that is usually employed for Fourier Modal Methods
[70,71]. When trying to combine a scattering matrix S so that�

A
B

�
�

�
S11 S12
S21 S22

��
C
D

�
; (40)

with a scattering matrix U such that�
D
E

�
�

�
U11 U12

U21 U22

��
B
F

�
; (41)

to obtain a matrix T so that�
A
E

�
�

�
T11 T12

T21 T22

��
C
F

�
: (42)

Then T is given by

T11 � S11 � S12�1 − S11U22�−1U11S21; (43)

T12 � S12�1 − S11U22�−1U12; (44)

T21 � U21�1 − S22U11�−1S21; (45)

T22 � U22 � U21�1 − S22U11�−1S22U12: (46)

This method can be applied here, although the Uij is gen-
erally not square. Here, A;B;C;D;E and Fmay represent vec-

tors as �A
�
j

C�
j
�, �B

�
j

D�
j
�, or simply �A�

j � or �B�
j �, depending on the

scattering matrix. Each time a cascade is needed, there is, how-
ever, no ambiguity on how to choose the vectors, given the size
of the matrices that have to be cascaded.

To compute the field inside the layers, beyond the reflection
and transmission coefficients of the whole structure, it is nec-
essary to compute the vectors that are eliminated during the
cascading process. They can be obtained through the following
relations:�
B
D

�
�
�

�1−S22U11�−1S21 �1−S22U11�−1S22U12

�1−S11U22�−1U11S21 �1−S11U22�−1U12

��
C
F

�
:

(47)

Finally, once all the A�
j , B�

j have been obtained using the
previous method, the most stable way to compute the magnetic
field (but this is true for any other field) is to use the following
hybrid expression inside a layer,

Hy � �A−
j e

ikjz �z−zj�1� � B�
j e

−ikjz �z−zj��ei�kxx−ωt�; (48)

with kjz � iκjt in the case of a metallic layer, to ensure the ex-
ponentials have a modulus as small as possible.

4. SIMULATION RESULTS

The purpose of this section is to put the numerical method we
have devised to a test. We have implemented the above scatter-
ing matrix algorithm, basing it on a code we have previously
released [59], and that has been used previously to simulate
the propagation of light beams in finite metallo-dielectric layers
[19,67]. The structure can be illuminated with a Gaussian
beam, which can be considered as a superposition of plane
waves. In that case, the field inside each layer is computed
as a superposition of the fields associated with each plane wave.
The amplitude of each plane wave is given here by

A�kx� �
w

2
ffiffiffi
π

p e−
w2
4 �kx−kx;0�e−kxx0 ; (49)

where w is the waist of the beam, its characteristic width; x0 is
the center of the beam; and kx;0 � nk0 sin θ, θ being the in-
cidence angle and x0 the location of the center of the beam.

When the waist is made very small (typically a tenth of the
wavelength), the source can be considered as almost punctual.
This is the kind of source we are considering to assess the sub-
wavelength imaging capabilities of the designs we study here.

A. Impact of Nonlocality on a Slab of −1 Index
Metamaterial

We first consider the structure known to behave as a −1 index
medium [66] which has been recently fabricated [8]. The struc-
ture we study is finite, and the incoming medium is air.
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Figure 2 shows the setup and the propagation of a beam inside
the structure.

This lens operation wavelength is of 363.8 nm, in the close
UV range. In that range, the plasmonic effects are actually
much higher [72]. They are usually linked to the Poynting vec-
tor inside the metal, which is roughly proportional to 1

ϵ, a factor
that becomes important when the permittivity is negative but
small. However, it is however not possible to consider a much
shorter wavelength because the titanium oxide then becomes
much more absorbent. This is what makes this close UV range
so interesting for building flat lenses, and this is a range for
which the nonlocal effects are much more likely to be notice-
able, too. We have simulated what happens when the structure
is illuminated with a Gaussian beam with a non-normal inci-
dence, an experiment that has been made to study the negative
refraction. A typical result is shown in Fig. 2. To compare local
and nonlocal simulations, in Fig. 3, we have plotted different
beam profile, for various incidence angles. There is very little
difference between the two. This can be related to the fact that
nonlocal effects can be seen for large wave vectors that are not
concerned by this kind of experiment.

B. Impact of the Channeling Regime

Keeping the same materials and operation wavelength, it is pos-
sible to find a structure in the channeling regime, i.e., present-
ing a flat dispersion curve according to the local theory [13]. In

such a medium, all the waves (whether they are evanescent in
the outside medium or not) propagate, and they do it in the
same direction. As long as the ratio hd

hm
is equal to the ratio

j ϵdϵm j ≃ 4.2, and the overall period stays small with respect to
the wavelength, we can consider that we are in the channeling
regime. The following two cases are considered here: (1) a 10-
period structure with a 10 nm metallic layer and a 42 nm di-
electric layer, and (2) a 25-period structure with a 4 nm metallic
layer and a 16.8 nm thick dielectric layer. Both structures begin
and terminate with a metallic layer so that their respective
thicknesses are 530 and 524 nm. The structure is illuminated
with a Gaussian beam (normal incidence, wavelength of
λ � 363.8 nm, waist of 0.1 nm, and focused on the entrance
of the structure). It should be underlined that what we call a
Gaussian beam contains evanescent waves, so that it is actually
almost a point source. The results of the computation are

Fig. 2. Propagation of an incident Gaussian beam with a waist
w � λ through a −1 index lens [8], showing the negative refraction
phenomenon, illustrated on the left. The modulus of the magnetic
field is plotted on the right. The incident medium is air.
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Fig. 3. Transmitted beam for different incidence angles (dotted line,
normal incidence; solid line, 20°; dashed line, 40°) for the local (black)
and the nonlocal (red) computation in the case of the −1 lens [8]. The
waist of the incident beam is w � λ.

Fig. 4. Profile of the outgoing beam (magnetic field) for the local
(black) and nonlocal (red) computation [case (1)]. The field profile is
computed at the very edge of the lens. Inset: local (left) and nonlocal
(right) corresponding field maps for the magnetic field. The incoming
medium (not shown here) is air.

Fig. 5. Profile of the outgoing beam for the local (black) and non-
local (red) computation [case (2)]. The field profile is computed at the
very edge of the lens. Inset: local (left) and nonlocal (right) correspond-
ing field maps for the magnetic field. The incoming medium (not
shown here) is air.
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shown in Fig. 4 for the first case with 10 nm thick metallic
layers and in Fig. 5 for the second case with thinner layers.

An important point is that the predictions of the local theory
are significantly different from the nonlocal one when it comes
to the profile of the outgoing beam. This means that nonlocal-
ity can definitely not be ignored, when the whole purpose of
the structure is to make an image of a source with subwave-
length resolution. Another interesting feature is the higher
transmission when nonlocality is considered. For both situa-
tions described above, we have computed the total Poynting
vector flux in the vertical direction. This flux is 6.6% higher
for the 10 nm thick metallic layers, and 5.1% higher in the
case of 4 nm thick metallic layers. The difference is noticeable
and can be attributed to the fact that the bulk plasmon acts
for light as a supplementary channel through the metallic
layers.

5. CONCLUSION

We have presented here numerical tools that allow us to take
nonlocality in metals into account when simulating the propa-
gation of a plane wave or of a beam in a metallo-dielectric
multilayer. These tools, relying essentially on analytical calcu-
lations, are meant to be as accurate as possible, through the use
of accurate material characteristics [60] and boundary condi-
tions that can be considered conservative [26] compared to
other implementations of the hydrodynamic model. The for-
mulas presented here are easy to adapt for different descriptions
of the metal and different boundary conditions, so that pre-
vious results can be retrieved and checked using the present
work. Furthermore, if the hydrodynamic model needs further
tuning to match future experiments, the present formalism
should be very easy to adapt. Finally, we have made the codes
we have written freely available [73].

We have used these tools to assess the impact of nonlocality
on realistic metallo-dielectric structures, presenting a negative
refractive index, and on the channeling regime. Our conclu-
sions are that, for a negative index around −1, the impact
of nonlocality should be expected to be negligible. For higher
absolute values of the refractive index that are required to reach
subwavelength resolution, and, especially in the channeling re-
gime, the effect of nonlocality cannot be ignored. We underline
that, even small effects such as the small change in the effective
index because of nonlocality, will have an impact on the
operation of flat lenses, especially when they are able to reach
super-resolution [19]. In that case, the propagation of high
wave vector waves is actually responsible for the subwavelength
resolution [13,15]. Thus, the structure has to be finely opti-
mized [65], and there is little doubt that nonlocal effects should
be taken into account. The tools we have provided here should
help to finely simulate the optical behavior of such structures.

We hope that the present work will make it easy for the
community to assess the impact of nonlocality thoroughly and
to take it accurately into account, to design structures or experi-
ments based on metallo-dielectric multilayers.

Funding. Agence Nationale de la Recherche (ANR) (ANR-
13-JS10-0003).
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