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Quasi-analytic study of scattering from optical plasmonic patch antennas
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Duke University, Box 90291 Durham, North Carolina 27708, USA
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We present an analytical treatment of the optical scattering from film-coupled nanocubes.

Film-coupled nanoparticles are a convenient platform for the demonstration of a variety of

fundamental plasmonic phenomena, including nonlocality and field enhancement, and can also serve

as the basis for controlled reflectance surfaces. The nanocube geometry is particularly amenable to

analysis, since the cubes behave in large part as plasmon resonant patch antennas, allowing the

well-known patch antenna equations to be applied with some modifications. In particular, we make

use of the plasmon dispersion relation to avoid direct calculation of the effective inductance per

unit length—which would include kinetic inductance contributions—instead calculating the

effective waveguide mode index to incorporate plasmonic contributions. We compare the

analytically derived field enhancement and spectral characteristics of the film-coupled nanoparticles

with those obtained from full-wave finite-element simulations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4827185]

I. INTRODUCTION

Certain configurations of metallic and other conducting

nanoparticles that support surface plasmons can produce

highly localized and strongly enhanced fields when illumi-

nated with light. Field enhancement serves as the key mecha-

nism in numerous optical phenomena of great interest,

including surface enhanced Raman scattering,1,2 enhanced

fluorescence,3 enhancement of nonlinearity,4 sensing,5 and

many light generation or amplification schemes.6–10 A larger

field enhancement can directly translate to a more significant

role for the associated phenomenon.

The largest field enhancements occur in nanosystems

that have sharp, nanoscale protrusions, or in composites with

nanoscale gaps between particles.11–13 Thus, fully leveraging

field enhancement requires nanoparticle configurations for

which critical features can be controlled reproducibly to the

sub-nanometer scale. Though early on such control was diffi-

cult to achieve, in recent years considerable progress has

been made in the fields of nanolithography and colloidal syn-

thesis, such that devices based on enhancement effects are

becoming feasible.

A system of particular interest is that of the film-coupled

nanoparticle, in which a nanoparticle positioned above a

metal film couples to its electromagnetic image formed by

the interaction of the nanoparticle and film.14–19 The electro-

magnetic scattering properties of the film-coupled nanopar-

ticle are very similar to those of a doublet—two closely

spaced, interacting nanoparticles—a frequently studied

archetypical system known to exhibit exceptionally large

field enhancements.20–23 In contrast to the doublet, however,

the film-coupled nanoparticle system can be fabricated rela-

tively simply by lithographic patterning or colloidal “bottom

up” synthesis. Starting with a metal film, a dielectric spacer

layer with precisely controlled thickness can be deposited

using a variety of surface chemistries or atomic layer deposi-

tion (ALD). Nanoparticles placed on the dielectric layer are

therefore spaced a uniform and tightly controlled distance

from the film, such that the enhancement expected from the

interaction is uniform and reproducibly at the single nano-

particle level. Film-coupled nanoparticles have been used to

demonstrate 100% yield in surface-enhanced Raman experi-

ments,24 enhance catalysis,25 and even probe the nonlocal

metal response that occurs under the most extreme coupling

conditions26 (gaps smaller than one nanometer).

In a recent study, film-coupled nanocubes were used to

form a surface with controlled reflectivity.27 The electromag-

netic properties of a film-coupled nanocube, nanodisk, or

other planar particle are distinct from that of a film-coupled

nanosphere, in that a transmission line mode can be formed

between the film and the planar nanoparticles. This transmis-

sion line mode can undergo a geometrical resonance caused

by reflections from the edges of the particle, leading to large

local field enhancements and large scattering that depend on

the geometry of the gap. For very small nanometer sized

gaps between the nanocube and film, the localized field is

nearly uniform across the gap and close to transverse electro-

magnetic (TEM) in character; thus, the film-coupled nano-

cube is, in fact, very similar to the well-known patch antenna

ubiquitous in microwave technology. The large local

enhancements and strong scattering associated with optical

patch antennas recently motivated their use to enhance single

photon emission.28,29

In this paper, we develop an analytical model of the

film-coupled nanocube resonator, arriving at closed form

expressions for the local field enhancement and scattering

properties. Combining a transmission line model modified

by the plasmon dispersion relation with results from the

theory of patch antennas, we determine the coupling of an

incident plane wave to the film-coupled nanoparticle—

referred to as an optical patch antenna in the following—

determining the resulting mode properties within the gap and

expected radiation patterns. Reasonable approximations are

introduced to enable the closed form expressions that
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illustrate the dependencies of the various quantities of

interest. We conclude by comparing the expected field

enhancement and spectral properties with those obtained

from full-wave simulations. Our conclusion is that the opti-

cal patch antenna can be analyzed in a manner similar to that

of conventional radio-frequency (RF) patch antennas, with

the main modification being for the plasmon dispersion

relation associated with the metal-insulator-metal gap plas-

mon.30 The effect of the gap plasmon is that the effective

per length inductance is increased substantially due to kinetic

inductance.31 The increased inductance leads to a large

effective propagation constant within the gap—equivalently,

a large effective waveguide index—so that the optical patch

at resonance is inherently much smaller relative to the wave-

length than a microwave patch at resonance.

II. SUMMARY OF PATCH ANTENNA MODES

We first recall the properties of a conventional (RF) res-

onant patch antenna relevant for the ensuing analysis. A key

simplifying assumption in the analysis of the resonant patch

is that the boundary conditions at the four slots can be

approximated as perfect magnetic conductors, with perfect

electric conductors approximating the metal conductor on

top and bottom of the patch. We consider a square patch, of

height h and whose width and length are W ¼ L, respec-

tively. With respect to Figure 1, the imposition of these

boundary conditions leads to the following conditions for the

wave vector components:

kx ¼
pp
h

p ¼ 0; 1; 2; …

ky ¼
mp
W

m ¼ 0; 1; 2; …

kz ¼
np
L

n ¼ 0; 1; 2; … :

(1)

We concentrate here on modes for which the electric field

has only a component along the x-direction. Moreover, since

the height of the patch is taken to be very small, modes with

variation along the x-direction are not excited at the

frequencies of interest, so we set p ¼ 0. Under these assump-

tions, the field distribution within the patch is transverse

magnetic (TMx) and can be written as

Exðx; y; zÞ ¼ �j
ðk2

y þ k2
z Þ

xl0e0er
Amn cosðkyxÞ cosðkzyÞ

Hyðx; y; zÞ ¼ � kz

l0

Amn cosðkyyÞ sinðkzzÞ

Hzðx; y; zÞ ¼ ky

l0

Amn sinðkyyÞ cosðkzzÞ:

(2)

In the previous expressions, e0 and l0 are the electric permit-

tivity and magnetic permeability of free space, respectively;

er is the relative permittivity of the medium underneath the

patch. The corresponding resonance frequencies are given by

�mn ¼
1

2
ffiffiffiffiffi
le
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

W

� �2

þ n

L

� �2
s

: (3)

The patch antenna radiates from effect source currents

located at the slot openings along the periphery of the patch.

Based on the equivalence principle, these effective source

currents can be estimated by replacing the electric fields Ea

at the surface of the slots by fictitious magnetic currents

related to the surface fields according to

Ms ¼ �2n̂ � Ea: (4)

A variety of formulas exist that correct the effective length

of the patch for the effects of fringing fields at the slot open-

ings; such corrections slightly alter the resonance frequen-

cies and characteristics of the modes, as well as the radiated

power. We will not consider such corrections here, as our

primary goal is to obtain insight rather than produce a com-

plete design tool.

In the following, we will restrict our analysis to the low-

est TMx
010 mode, for which Eq. (2) reduces to

Exðx; y; zÞ ¼ E0 cos
p
W

y

� �

Hzðx; y; zÞ ¼ H0 sin
p
W

y

� �
:

(5)

This mode is TEM and is similar to the plasmonic patch

mode that will be considered below. For such a mode, the

transmission line model can be applied to determine the cou-

pling of a magnetic driving field to the resonant fields within

the patch, as will be described shortly.

The far-field radiation pattern for the mode specified by

Eq. (5) can be calculated using the effective source current

density of Eq. (4), yielding32

Er � Eh ¼ 0

Eu ¼ þj
k0hLE0e�jk0r

2pr
sin h

sin X

X

sin Z

Z

� �
Hh ¼ Eu=g0;

(6)

where

FIG. 1. Diagram of a conventional patch antenna showing the coordinate

system. The arrows indicate the strength and direction of the electric field

and the thick, solid line indicates the magnitude of the magnetic field of the

TMx
010 resonant mode.
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X ¼ k0h

2
sin h cos u

Z ¼ k0L

2
cos h:

(7)

Here, h is taken from the positive z-axis while u is in the xy
plane and taken from the x-axis; g0 is the impedance of free

space. Equation (6) represents the radiation pattern for a sin-

gle slot; for the two slots, an array factor must be included of

the form,32

ðAFÞy ¼ 2 cos
k0W

2
sin h sin u

� �
: (8)

The above analysis provides a compact summary of the

properties of the patch antenna, but does not provide a means

to compute the coupling of the antenna to an incident wave.

Typically, an antenna feed is considered as part of the system

and the antenna gain, directivity and similar parameters are

of interest. In the present context, however, we are interested

in the scattering properties of the patch, and must apply a

model that connects the local fields of the patch to the fields

of the incident wave. To fully model the response of the

patch, we must also include the effects of radiation resist-

ance. In the absence of radiation resistance, an otherwise

lossless patch would produce infinitely large local fields in

response to an incident field of any magnitude.

III. TRANSMISSION LINE MODEL OF PATCH

Because the ground plane produces an electromagnetic

image of the upper patch, the optical patch antenna is similar

to the “cut-wire pair” structure used to produce artificially

magnetic metamaterials.33 The cut-wire pair can be thought

of as being excited by the magnetic flux that flows in the gap

between the separated metallic wires or plates. As described

above, the mode propagating within the plate is to a good

approximation TEM, so that a transmission line analysis can

be properly formulated and the details of the system can be

replaced by the equivalent circuit shown in Fig. 2. The quan-

tities R0s, C0S, and L0S are the series resistance per unit length,

shunt capacitance per unit length, and series inductance per

unit length. The effective transmission line terminates at ei-

ther edge of the patch in an effective lumped radiation resist-

ance, Rr. The explicit expressions for the resistances will be

derived in Secs. V and VI. In particular, we will show that

Rr can be obtained from the scattering characteristics of the

patch antenna, while R0s will require the calculation of the

propagation losses of the gap-plasmon mode associated to

the optical patch antenna.

In order calculate, the induced current and voltage on

the patch as a function of the incident field, we begin by

assuming the incident plane wave is incident normally onto

the patch (i.e., along the negative x-direction), and is polar-

ized such that the magnetic field lies along the z-direction. A

transmission line circuit similar to that shown in Fig. 2 has

been used in the analysis of plasmonic wire pairs, where the

two lines correspond to the patch and ground plane. To find

the induced current and voltage along the patch as a function

of the driving flux from the incident field, we adopt the tech-

nique used by Lagarkov and Sarychev.34 The electromag-

netic force induced around a loop enclosing magnetic flux

can be found by integrating the Maxwell curl equation,

r� E ¼ � @B

@t
: (9)

Integrating Eq. (9) around a differential loop of area hDy, we

obtain

Vðyþ DyÞ � VðyÞ ¼ �IðyÞZ � jxl02H0hDy: (10)

Performing a Taylor expansion on the voltage, we have

@VðyÞ
@y

¼ �IðyÞZ0 � jxl02H0h; (11)

where Z0 ¼ R0S þ jxL0S. The factor of two on the right hand

side of Eq. (11) accounts for the reflected field, which dou-

bles the incident magnetic field. In the usual manner, a sec-

ond equation can be found by considering the displacement

current shunted across the line

@IðyÞ
@y
¼ jxC0SVðyÞ: (12)

From these two equations, we obtain an expression for the cur-

rent as a function of position along the transmission line, or

@2IðyÞ
@y2

¼ g2IðyÞ þ F; (13)

where

g2 ¼ �jxC0SZ0

F ¼ 2x2C0Sl0hH0:
(14)

Equation (13) can be solved to obtain the general solution

IðyÞ ¼ F

g2
þ A cosðgyÞ þ B sinðgyÞ

VðyÞ ¼ Ag sinðgyÞ
jxC0S

� Bg cosðgyÞ
jxC0S

;

(15)

where A and B are arbitrary coefficients to be determined by

the boundary conditions. Based on the mirror symmetry of

the configuration, we assume the symmetric solution and set

B ¼ 0 to arrive at the following condition:FIG. 2. Equivalent circuit of the magnetically driven patch antenna.
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VðW=2Þ
IðW=2Þ ¼

Ag sin gW
2

� �
jxC0S

F

g2
þ A cos

gW

2

� � ¼ Rr; (16)

from which we find

A ¼

jxC0SRrF

g2

g sin
gW

2

� �
� jxC0SRr cos

gW

2

� � : (17)

Equations (15) and (17) then provide the complete solution

for the induced current and voltage on the patch as a function

of the incident field.

IV. FIELD ENHANCEMENT OF THE RESONANT PATCH

The peak voltages on the patch for the TMx
010 mode

occur at the slots located at y ¼ 6W=2, as depicted in Fig. 1.

Knowledge of the voltage at these points combined with the

mode specification of Eq. (5) then allows determination of

both the fields everywhere inside the patch as well as the

power radiated. From Eqs. (15) and (17), we find the voltage

at the slot located at y ¼ þW=2 to be

V
W

2

� �
¼

RrF

g

g sin
gW

2

� �
� jxC0SRr cos

gW

2

� � sin
gW

2

� �
: (18)

Writing Eq. (18) in terms of the field, and normalizing with

respect to the incident field, we obtain

E
W

2

� �
E0

¼

2Rrx2C0Sl0

gg0

gsin
gW

2

� �
� jxC0SRrcos

gW

2

� � sin
gW

2

� �
: (19)

The per unit length shunt capacitance, assuming no dielectric

spacer, can be approximated as that of a parallel plate capac-

itor, or

C0S ¼ e0

W

h
: (20)

For the plasmonic patch to be considered below, Eq. (20)

should be multiplied by a factor of bhþ e�bh (where b is the

transmission line propagation constant) to account for both

intra-plate and cross-plate capacitances.35 However, in the

limit of small gaps, bh� 1 so that ðbhþ e�bhÞ � 1. Thus,

Eq. (20) remains unchanged for the configurations consid-

ered here.

The expression for the per unit length inductance for ei-

ther the standard patch or the plasmonic patch is more com-

plicated, since either skin depth effects at lower

frequencies32 or kinetic inductance at optical wavelengths31

play a significant role. We are able to bypass the explicit

consideration of the inductance, L0S, however, which enters

the equations everywhere as a product with the per unit

length capacitance, L0SC0S. Since the transmission line propa-

gation constant has the form b2 ¼ x2L0SC0S, we can make use

of the dispersion relation to determine b directly. With this

subsequent substitution in mind, we write

g2 ¼ �jxC0SZ0 ¼ �jxC0SðR0S þ jxL0SÞ
¼ �jxC0SR0S þ x2L0SC0S

¼ b2 � jxC0SR0S;

(21)

where

b ¼ 2png

k0

: (22)

In Eq. (22), ng is the effective index associated with the

waveguide mode. Inserting the expression in Eq. (20) for the

capacitance into Eq. (19), we obtain

f ¼
2

k0

g

Rr

g0

W

h

g

k0

sin
gW

2

� �
� j

W

h

� �
Rr

g0

cos
gW

2

� � sin
gW

2

� �
(23)

and

g2 ¼ b2 � jk0

W

h

R0S
g0

; (24)

where f ¼ EðW=2Þ=E0 is the field enhancement.

There are two interesting limits to observe from the

above equations. In the absence of radiative losses, Rr !1,

and Eq. (23) reduces to

fRr!1 ¼ �2j
k0

g
tan

gW

2

� �
: (25)

We are interested in the behavior of the patch at resonance at

which, in the absence of losses, the wavelength in the guide

is twice the width of the guide, or

kr ¼ 2W: (26)

In the absence of losses, this condition equates to

g
W

2
¼ b

W

2
¼ p

2
: (27)

If the resistive losses are taken as very small rather than

zero, the resonance condition is not altered much, but we can

approximate

g ’ b� j
k0

b
W

2h

R0S
g0

: (28)

Inserting Eq. (28) into Eq. (25) and using the resonance

condition of Eq. (27), we obtain an approximate expression

for the local field enhancement in the absence of radiative

losses of

163108-4 Cirac�ı et al. J. Appl. Phys. 114, 163108 (2013)



fRr!1 ¼ 8
h

W

� �
g0

WR0S

� �
: (29)

Thus, we see that in the absence of either resistive or radia-

tive losses, the local field enhancement diverges at resonance

as expected for a resonant circuit. The inclusion of resistive

losses makes the resonance fields finite and also introduces a

slight shift to the resonance frequency that we do not con-

sider further.

If the radiation resistance is finite, then we can safely

take the limit of zero absorptive losses (R0S !1) in Eq.

(23), setting the cosine term in the denominator to zero, such

that

fR0S!1 ¼
2

n2
g

Rr

g0

W

h
: (30)

Equation (30) is particularly useful for comparison with nu-

merical simulations, since resistive losses can be switched

off and radiation damping made the only loss mechanism.

Note that as the radiation resistance increases, the local field

enhancement increases without bound, as would be expected

for a lossless resonator.

V. CALCULATION OF RADIATIVE LOSSES

It remains now to calculate values for the various loss

factors that will complete our parameterization of the optical

patch. To calculate the radiation resistance, we start by con-

sidering the field distribution for the particular polarization

under consideration. For this polarization, only the Hh and

Eu components exist, so that from Eq. (6) we can write

Eu ¼ þj
k0hLE0e�jk0r

2pr
f ðh; uÞ

Hh ¼ Eu=g0;

(31)

where f ðh; uÞ is a dimensionless function of the angular

coordinates. Recall that the field distribution in Eq. (6) arises

from an effective magnetic current assumed to be generated

at the slot of the patch. The total radiated power can be com-

puted from Eq. (31) as32

Prad ¼
1

2g0

L

k0

� �2

ðhE0Þ2
ðp
0

ðp
0

f 2ðh; uÞsin h dh du

¼ V2

2g0

L

k0

� �2ðp
0

ðp
0

f 2ðh; uÞsinh dh du:

(32)

We have introduced the driving voltage V ¼ hE0, which

arises from the equivalence principle. Assuming the gap

length is very small, we write

f ðh; uÞ ¼ 2 cos
k0W

2
sinh sinu

� �
sinh

sin
k0L

2
cosh

� �
k0L

2
cosh

; (33)

so that

Prad ¼
V2

Rr
¼ 2V2

g0

I1

p2

� �
; (34)

where

Rr ¼
p2g0

2I1

I1 ¼
ðp
0

ðp
0

cos2 k0W

2
sin h sin u

� �
sin3 h

sin2 k0L

2
cos h

� �
cos2 h

dhdu:

(35)

Note that due to the large effective index, the overall size of

an optical patch can be much smaller than the wavelength.

Thus, the integral I1 can be substantially smaller than for

microwave patch antennas, with the corresponding radiation

resistance values much higher (�0.8–4.5 kX). For reference

later below, the computed radiation resistance for a

W¼ 80 nm silver patch antenna is about 1.5 kX.

VI. PLASMONIC EFFECTS AND RESISTIVE LOSSES

Since our goal is to understand the enhancement associ-

ated with nanoantennas at optical wavelengths, we must con-

sider in more detail the effect of the metal. The radiation

damping term would not be expected to change significantly,

at least given our assumptions above; however, losses must

be calculated assuming a more accurate field distribution

within the metal. In this section we review the details of the

gap plasmon mode and then find an approximate expression

for the transmission line effective resistance per unit length.

At optical wavelengths, the metal cannot be assumed

perfect, and a significant amount of field will extend into the

metal regions. The nature of the cavity solutions, obtained

for the case of a perfect metal by assuming the guided mode

solutions in Eq. (2), will change to reflect the modified

boundary condition on top and bottom of the cavity. Here we

focus again on the lowest order mode that can propagate in

the gap.

Using the same coordinate system as before, we can

write the field solutions in the gap between two infinite metal

regions, assuming continuity of the tangential components of

the electric and magnetic fields across the interfaces. We first

assume the magnetic field solution

H ¼
HI

zẑejxe�jkyy x < �h=2

ẑHII
z cosðkxxÞe�jkyy �h=2 < x < h=2

HIII
z ẑe�jxe�jkyy h=2 < x

;

8><
>: (36)

where kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y � k2
0

q
and j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y � e0ðxÞk2
0

q
. This is a

symmetric mode that will turn out to be analogous to the

TMx
010 mode considered above, allowing us to make use of

all formulas previously derived. We can relate the electric

field to the magnetic field components in Eq. (36) using

r�H ¼ jxeðxÞE; (37)

from which we find
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Ex ¼
1

jxeðxÞ
@Hz

@y

� �

Ey ¼ �
1

jxeðxÞ
@Hz

@x

� �
:

(38)

Here, eðxÞ ¼ e0ðxÞ þ je00ðxÞ is the dielectric function of

metal. The electric field in the three regions can then be writ-

ten as

E¼

HI
z �

ky

xeðxÞ x̂ejx� j
jxeðxÞ ŷejx

� �
x<�h=2

HII
z �ky

x
x̂cosðkxxÞþkx

x
sinðkxxÞŷ

� �
�h=2<x<h=2:

HIII
z � ky

xeðxÞ x̂e�jxþ j
jxeðxÞŷe�jx

� �
h=2<x

8>>>>>>>>>><
>>>>>>>>>>:

(39)

In writing Eq. (39), we omitted the common factor

expð�jkyyÞ in all of the expressions. Setting the tangential

components of the magnetic field equal at the two interfaces,

we obtain from Eq. (36)

HII
z cos

kxh

2

� �
¼ HI

ze
�kxh

2 : (40)

Setting the tangential components of the electric field equal

at the two interfaces, we obtain from Eq. (39)

�HII
z sin

kxh

2

� �
¼ �HI

z

j
jkxeðxÞ

e�
kxh
2 : (41)

Dividing Eq. (41) by Eq. (40), we obtain the dispersion rela-

tion for the gap plasmon

tan
kxh

2

� �
¼ �j

j
kxeðxÞ

: (42)

In the absence of loss, eðxÞ ¼ e0ðxÞ, Eq. (42) has solutions

only for imaginary kx, so we arrive at the final form of the

dispersion relation

kxtanh
kxh

2

� �
þ j

e0ðxÞ ¼ 0: (43)

Using Eq. (43), we can determine the propagation constant

ky for the wave propagating within the gap. As an example,

we will consider silver nanocubes interacting with a silver

film. Using published data36 for the real part of the dielectric

function of silver in Eq. (43), we solve for ky and plot the ra-

tio ng ¼ ky=k0 in Fig. 3.

Note from the solution of Eq. (36) that, in general, the

gap plasmon has fields that vary along both the x and y direc-

tions and, in particular, electric fields that vary in both the x
and y directions. However, from Eq. (39) we see that the ra-

tio of the y to the x component of the electric field is

jEyj
jExj
¼ ky

kx
tanðkxhÞ: (44)

For large effective mode index kx � ky, we see from Eq. (44)

that the y-component of the electric field can be extremely

small due to the small size of the gap relative to the wave-

length. The transmission line framework outlined above,

then, remains applicable even to the optical patch.

To determine the losses in the above transmission line

model, the resistance per unit length must be calculated. In

the presence of losses, a voltage or current wave traveling

along a transmission line has the form expðcyÞ, where

c ¼ jg ¼ �a� jb. A straightforward means of determining

the transmission line parameters would be to solve the dis-

persion equation, Eq. (43), for the complex ky and compare

the real and imaginary parts. In the spirit of obtaining ana-

lytic expressions, however, we attempt here a perturbative

solution assuming that the resistance per unit length is very

small. In this limit, the transmission line voltage decays with

length at a rate of

a ’ R0S
2

ffiffiffiffiffiffi
C0S
L0S

s
¼ R0SC0S

2

ffiffiffiffiffiffiffiffiffiffi
1

L0SC0S

s

¼ R0S
2g0

W

hng
:

(45)

We have made use of the expression for the capacitance to

obtain the final form in Eq. (45).

If one now allows for a complex dielectric function

(e! e0 � je00), the wavenumber determined from Eq. (42)

will be complex; that is,

ky ! ky þ j~ky; (46)

where we expect the imaginary part of the wave number to

be proportional to the imaginary part of the dielectric func-

tion. Substituting this form of the y-component of the propa-

gation vector into Eq. (43) and expanding all terms up to the

first order, we obtain

~ky ’
je00

tanh
kxh

2

� �
þ kxh

2

� �
nge0

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g � 1
q � nge0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
g � e0

q
0
@

1
A
: (47)

FIG. 3. Effective guide index for the gap-plasmon mode associated to the

metal-air-metal waveguide. The metal regions extend infinitely and are sepa-

rated by a distance of 10 nm. Metal is assumed to be silver.
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In calculating Eq. (47) we neglected terms containing prod-

ucts of the from: ~kye00, e002, etc. It is clear from Eq. (47) that

resistive losses increase with e00 as well as with j. Here, j�1

plays a role akin to the skin depth of a conventional conduc-

tor, indicating the extent that the fields penetrate into the

metal regions. Comparing Eq. (47) with Eq. (45), we find

R0S ¼ g0

2hng

W

je00

tanh
kxh

2

� �
þ kxh

2

� �
nge0

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g � 1
q � nge0ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
g � e0

q
0
@

1
A
:

(48)

Recalling that kx ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g � 1
q

and j ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g � e0ðxÞ
q

, we

find an approximate expression for the resistance per unit

length based on the known geometry and material parame-

ters of the patch. We have confirmed the validity of Eq. (48)

by computing the complex mode propagation constant

numerically; extremely good agreement is found between

the two methods, indicating the assumptions made in arriv-

ing at Eq. (48) are appropriate. Note that Eqs. (47) and (48)

are in general valid for any gap size, provided losses are

small. In the limit of small gaps, such that tanhðxÞ ’ x, alter-

native approximate formulas can be easily found.37

To get an idea of the order of magnitude of the per unit

length resistance, we solve Eq. (48) assuming the dielectric

function data from Johnson and Christy36 and a cube of

dimension W¼ 80 nm spaced a distance h¼ 10 nm above a

film. The resulting curve is shown in Fig. 4. For this cube, it

will be shown in Sec. VII that the resonance wavelength

occurs around k¼ 530 nm where there is a significant drop in

the loss.

VII. SPECIFIC EXAMPLES

Having fixed the nanocube side length W, we solve self-

consistently the equation,

kr ¼ 2WngðkrÞ; (49)

to determine the resonance wavelength, kr. Alternatively, we

can infer the effective mode index by observing the position

of the resonance in a full wave simulation. However, because

of the fringing effects, the nanocube tends to be electrically

larger than its physical dimension. The fringing fields indi-

cate that the boundary conditions at the slot surfaces are not

strictly magnetic, so that an additive correction,38 D that

alters the resonance condition is required. Equation (49) then

can be modified as

kr ¼ 2Wef f ngðkrÞ ¼ 2ðW þ 2DÞngðkrÞ: (50)

Based on full wave simulations, for a cube size of W ¼ 80 nm

with a gap of h ¼ 10 nm, we find D ¼ 9:2 nm and the reso-

nance wavelength for the silver cube to be near kr ¼ 530 nm.

In general, to find the appropriate resonance conditions we

must appeal to full-wave simulations.

At this point, some considerations on the effect of the

plasmonic nature of the patch on the coupling with the inci-

dent fields are required. As we have shown above, a signifi-

cant amount of field extends into the metal regions. In

particular, this will alter the amount of magnetic flux flowing

through the patch. The integration of Maxwell’s curl equa-

tion (9) should be then extended to a larger area to properly

include that portion of the magnetic field penetrating the

metal. The effect can be captured by considering the loop

area to be ðhþ 2dÞDy, where d ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ek2

0

q
indicates the

fields penetration depth. The effect of increasing the mag-

netic flux directly impacts the maximum field enhancement

by a factor of ð1þ 2d=hÞ. Equation (23) then becomes

f ¼
2

k0

g

Rr

g0

W

h
1þ 2

d
h

� �
g

k0

sin
gW

2

� �
� j

W

h

� �
Rr

g0

cos
gW

2

� � sin
gW

2

� �
: (51)

At visible frequencies, this modification introduces an im-

portant correction that enhances the electric field enhance-

ment by an additional factor of �10–15.

Having found the series resistance per unit length and

the radiation resistance in the previous sections, we can now

compute the electric field enhancements within the patch. In

the absence of resistive losses, we find the enhancement

curve shown in Fig. 5. At resonance, the local field is

roughly 55 times that of the incident field at the slot, falling

off towards the interior of the patch. The peak field coincides

exactly with Eq. (30).

When the resistive losses indicated in Fig. 4 are

included, the peak field enhancement is reduced and the

curve broadens somewhat. We see the peak field enhance-

ment is reduced to about 40.

VIII. VALIDATION

To demonstrate the validity of our model we perform in

this section a series of comparisons with full-wave simula-

tions. In Ref. 27 an optical analog of the microwave patch

antenna was fabricated using colloidal silver nanocubes. In

our theory, we implicitly assumed that the thickness of the

patch does play a negligible role in determining the field

enhancements. This is particularly true considering the sim-

plicity of the approach adopted. For this reason and because
FIG. 4. Resistance per unit length [X/nm] of the transmission line mode as a

function of wavelength, as calculated using Eq. (48).
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of the actual implementation of the system, we will consider

in this paragraph patches constituted by cubic nanoparticles.

Numerical simulations are carried out using a commercial

electromagnetic mode solver based on the finite-element

method, COMSOL Multiphysics. In the simulations, an inci-

dent wave is directed onto a single silver nanocube posi-

tioned a distance h above a 50 nm thick silver film. The wave

is incident parallel to the surface normal of the film. To

avoid numerical artifacts, we round the edges of the nano-

cube to a radius of 7 nm. The cross-section of the simulated

geometry is shown in the inset of Fig. 6. The incident field is

specified analytically for the bare film geometry, and the

resulting scattered field due to the presence of the nanocube

can then be solved for using the scattered field formulation.26

As was done for the analytical studies above, Johnson and

Christy data36 are used to define the optical properties of sil-

ver in the full-wave simulation. Both the volumes above and

underneath the silver film are defined to be vacuum (n ¼ 1).

Figure 6 shows a comparison of full-wave simulations to

plasmonic patch theory for several nanocube sizes and sepa-

ration distances.

As mentioned in Sec. VII, for the resonances predicted

by the theory to match simulations a correction must be

applied to account for the reflection phase shift at the

slots. The effective dimension of the nanocube is then

Wef f ¼ Lef f ¼ W þ 2D. To obtain D, we must perform a full-

wave simulation for each gap size, h. In Fig. 6, the correction

factors are found as follows: for h¼ 5 nm, D ¼ 1:2 nm; for

h¼ 10 nm, D ¼ 9:2 nm; and for h¼ 15 nm, D ¼ 15:6 nm.

Once D is obtained using one simulation for a given gap

size, the theory then accurately predicts the resonance posi-

tions for other nanocube sizes, as shown in Fig. 6. For each

gap size, D was obtained using the 80 nm nanocube, yet the

theory still accurately predicts the resonance positions for

both the 70 nm and 90 nm nanocube sizes.

As can be seen from Fig. 6, the theory predicts very well

both the field enhancement and spectral characteristics of the

fundamental mode resonance. The agreement is striking con-

sidering the simplicity of our model. However, as the gap

size is reduced, the agreement of theory with full-wave simu-

lations worsens. The same disagreement persists also in the

absence of resistive losses, as shown in Fig. 7, where field

enhancements were calculated neglecting absorption losses

in the metal (eðxÞ ¼ e0ðxÞ), for a 80 nm nanocube spaced

only 5 nm from the film. These results are not surprising,

considering the details, for example, of the rounded edges

used in the simulations that are not captured by our analytic

expressions. In fact, the local field distribution at the edges

can be relatively complex and no doubt has a significant

impact on the field enhancement. By the time the nanocube

is only 5 nm from the film, the edge rounding is no longer

negligible in comparison with the critical dimensions.

Sharpening the nanocube edges however, only partially

accounts for the difference. Another cause for the disagree-

ment can be found in the coupling of the nanocubes with the

surface plasmon propagating along the film surface, which

FIG. 6. Comparison of full-wave simulations (dashed lines) to patch antenna

theory (solid lines) for several nanocube sizes: W¼ 70 nm (green),

W¼ 80 nm (red), and W¼ 90 nm (blue). Here, the ordinates represent the

modulus of the enhancement factor for the electric field (vertical compo-

nent) in the gap. The values are taken at the edge of the nanocube (y¼W/2)

where the field is maximized. The nanocubes were positioned a distance, h,

above the ground plane metal film: (a) h¼ 15 nm, (b) h¼ 10 nm, (c)

h¼ 5 nm. On the top, a schematic of the simulated geometry.

FIG. 5. Local electric field enhancement as a function of wavelength for a

W¼ 80 nm cube spaced 10 nm from film. Only radiative losses are included,

not resistive (solid line). Both radiative and resistive losses are included

(dotted line).
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could introduce an important modification of the radiation

resistance, and it is completely neglected by the theory.

IX. CONCLUSION

We have introduced a simple, yet comprehensive model

for describing patch antennas at optical frequencies. The

introduction of an equivalent circuit was indispensable for

two reasons. On the one hand, it enables the description of

interaction of the system with an incident field in a very sim-

ple and enlightening way; on the other hand, it allows an in-

dependent description for radiative and absorption

properties. The radiative characteristics are described

through the well-known microstrip patch antenna theory,

which we have shown retains its applicability even when the

patch is substituted with a cube. That the patch theory

remains valid stems from the fact that at optical frequencies,

a nanocube is much smaller than its resonance wavelength.

The impact of the cube on the radiation properties of the

slots is then negligible and the effective magnetic currents

radiate as if in free-space; that is, the equivalence principle

used for planar patches is unchanged.

While the majority of nanoplasmonic systems require

full-wave simulations to accurately assess their optical prop-

erties, the film-coupled planar nanoparticle geometry is

somewhat more amenable to analytical approaches since it

conforms mostly to the planar patch geometry. Departures

from the traditional patch theory are mostly contained within

the dispersion relation for the gap plasmon mode, which we

have used to complete the analysis. The effective waveguide

index that results from the gap dispersion relation can be

used, for example, to bypass what would be a much more

complicated analytical calculation of the per unit length in-

ductance. Likewise, we find that the resistive losses in the

plasmonic patch antenna are small enough that a perturbative

approach can be applied to the dispersion relation, revealing

that the resistance per unit length is directly proportional to

the gap plasmon mode absorption.

The plasmonic nature of the optical patch has a strong

impact on the coupling of the patch to the incident wave.

Our model shows that the fundamental mode underneath the

nanocube is exclusively excited by the incident magnetic

field. At optical wavelengths, where the metal response is

more dielectric-like than conductor-like, the coupling with

the incident wave is increased by roughly a factor of 10 com-

pared with the case of a perfectly conducting patch. This

increase is due to the greater penetration of the magnetic

field into the metal, which results in a larger flux area as

compared with that proscribed by the gap.

We believe the model as presented not only provides a

useful glimpse into the underlying physics of the plasmonic

patch antenna system—offering useful insights for potential

applications—but also provides accurate predictions of the

patch behavior. These characteristics make the optical patch

system a valuable tool that may potentially be applied to fur-

ther analytical calculations of other phenomena of interest,

including controlled reflectance and enhanced fluorescence.
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