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Abstract: One dimensional photonic crystals combining positive and
negative index layers have shown to present a photonic band gap insensitive
to the period scaling when the volume average index vanishes. Defect
modes lying in this zero-n̄ gap can in addition be obtained without locally
breaking the symmetry of the crystal lattice. In this work, index dispersion
is shown to broaden the resonant frequencies creating then a conduction
band lying inside the zero-n̄ gap. Self-collimation and focusing effects are
in addition demonstrated in zero-average index metamaterials supporting
defect modes. This beam shaping is explained in the framework of a beam
propagation model by introducing an harmonic average index parameter.
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1. Introduction

Photonic band gap materials have recently been revisited owing to the fascinating left-handed
metamaterial properties. Bragg scattering in periodic positive index photonic crystals (PCs)
is known to generate forbidden frequency bands for photons [1]. Although optical properties
of photonic band gap devices are nowadays well known and used in many fields of photonic,
a new kind of photonic crystal based on metamaterial properties have recently attracted sig-
nificant attention. Photonic band gap metamaterials (PBGM) combining positive and negative
index materials have shown to support a disallowed frequency band of intriguing properties
[2],[3]. An omnidirectional photonic band gap, insensitive with respect to the period scaling,
random or light polarization appears in one-dimensional PCs when the average optical index
over the unit cell vanishes to zero [4]. This forbidden frequency band named zero-n̄ gap has
been evidenced with stacked layers of metamaterials presenting both negative electric and mag-
netic permittivities in the GHz frequency range [5]. Similar experimental demonstrations have
been led in near-infrared domain with the use of two-dimensional photonic crystal layers that
emulate negative-index materials [6], [7]. Transmission pikes lying in the zero-n̄ gap have in
addition been theoretically predicted when a resonant optical condition similar to Fabry-Perot
(FP) condition is satisfied [3]. Although these resonant states have not yet been experimentally
observed, they present unusual properties. Indeed, conversely to defect modes obtained in pos-
itive PCs devices, FP resonant states appears without introducing any lattice defects such as
cavities in PBGMs and consequently they extend over the entire structure [8]. PBGMs have
also proven interesting properties in terms of beam shaping [9] or self-collimation effect [7].
The latter has in particular been demonstrated with a specific device which can be viewed as
a periodic set of flat lenses of -1 optical index alternated with air-layers. A Gaussian beam
launched in this structure propagates without suffering of diffraction since the beam spreading
in the air-layers is exactly cancelled by the focusing power of the PC-layers. Note that in this
experiment the self-collimation regime is based on the excitation of propagating modes Bloch
modes lying in the conduction band rather than FP resonant states lying in the zero-n̄ gap.

In this work, we first demonstrate that refractive index dispersion can open a transmission
band instead of the theoretical narrow FP resonance in the zero-n̄ gap. This result, developed in
section 2, points that an experimental demonstration of FP states requires an accurate control
of metamaterial index dispersion. In section 3, we challenge to give the optical conditions nec-
essary to get self-collimation and focusing effects in PBGM supporting FP resonant states. It is
shown that these beam shaping properties arising in zero-average index materials are explained
in terms of a harmonic average index condition.

2. Resonant modes in dispersive photonic band gap metamaterials

Consider a 1D PBGM consisting in a set of periodic layers of thickness d1 and d2 and optical
indices n1 and n2 respectively. The PBGM’s unit cell of period D = d1 + d2 combines right-
and left-handed materials presenting either both positive electric and magnetic permittivities
ε1 and μ1 or simultaneously negative permittivities ε2 and μ2. The left-handed layers present
then a negative optical index n2 =−√ε2μ2. Infinite PBGMs are characterized by the following
dispersion equation (1) where the Bloch wave propagation constant κ depends on the layer
impedances ηi =

√
μi/εi in the medium i and on the average index n̄ = (n1d1 +n2d2)/D [3]:

cos(κD) = cos(n̄kD)+
(η1 −η2)

2

2η1η2
sin(n1kd1)sin(|n2|kd2), (1)

here k = 2π/λ is the wave number in vacuum. Providing that the impedances are mismatched
(η1 �= η2), the zero-n̄ gap opens when n̄ = 0 since no real propagation constant κ can be found.
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However, allowed transmission pikes appear for singular wavelengths satisfying the following
FP condition: Λm = 2n1d1/m where m is a non-zero integer [3]. For a non-dispersive PBGM
consisting of a finite number N = 50 of unit cells, sharp transmission pikes centered on these
singular wavelengths are observed in the reflection diagram, see black curves of Fig. 1. The
reflection coefficient of the finite size PC is computed for TM-polarized light with the rigorous
electromagnetic code described in [10]. Similar results can be found in the TE polarization
case.

Metamaterials are however dispersive so that n̄ = 0 is only satisfied for a particular wave-
length. It has been shown that dispersion reduce the spectral bandwidth of the zero-n̄ gap in
the off resonance regime [11]. Here, we would emphasis the impact on dispersion in opening
FP resonances. For that purpose, optical index dispersion is only considered for the left-handed
material. We choose n2(λ ) = n0

2 +Δn2(λ ), where Δn2(λ ) = C(λ −λ0) is assumed in first ap-
proximation to be a linear function vanishing at the wavelength λ0. The constant C is chosen
to 0.5/λ0 which amounts to consider weakly dispersive left-handed layers. The zero-average
index condition is then obtained at λ0 when n1d1 +n0

2d2 = 0. The Taylor expansion of Eq. (1)
in neighborhoods of the resonant wavelength gives us:

cos(κD)� 1+Γx2
m +ΓΔn2(λ )kd2xm − (Δn2(λ )kd2)

2/2, (2)

where xm = n2(λ )kd1 − mπ and Γ = (η1 − η2)
2/(2η1η2). Equation (2) shows that when

|cos(κD)| ≤ 1, bands of transmission centered on the resonances are found instead of the dis-
crete sharp pikes. The spectral width of such bands, derived from Eq. (2), increases with the
index mismatch seen around the mth resonance:

Δmλ =
mA

(
η2

2 −η2
1

)
(λ0 −Λm)

A2η2η1 −m(A+m)(η2 −η1)
2 , (3)

where A = 2d2C. These results are illustrated with a PBGM presenting a zero-average index
condition exactly satisfied at the reduced frequency D/λ0 = 13/8 (so that Δn2(λ0) = 0). As
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Fig. 1. (a) and (c): dispersion relation given by Eq. (1) (black curve) and its Taylor expan-
sions (Eq. (2)) (red curve). (b) and (d): reflectance of the structure composed of N = 50
periods. Black curves correspond to the nondispersive case and red curves to the disper-
sive case. (a) and (b): the structure is characterized by n1 = 1, n0

2 =−2, η1 = 1, η2 = 0.5,
d1 = 2D/3, d2 = D/3 and D/λ0 = 13/8 (which corresponds to D = 1.625λ0). (c) and (d):
the parameters are the same but D/λ0 = 3/2.

shown in Fig. 1a, FP modes are affected by index dispersion and the singular allowed wave-
lengths Λm are now replaced by bands of transmission (red curves). Since index dispersion
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prevents exactly fulfill the FP condition, the transmission pikes broaden when the spectral dis-
tance |λ0 −Λm| increases, Fig. 1b. The first and the third resonances become in this scheme
large conducting bands whose upper and lower boundaries determine the zero-n̄ gap edges.
The reflection spectrum also indicates that a large conduction band opens between the third and
the fourth resonances. Note that the Taylor expansion of Eq. (2) around the resonances is valid
at the vicinity of n̄ = 0. This explains why this Taylor expansion cannot strictly match with the
reflection diagram outside the zero-n̄ gap. However, inside the zero-n̄ gap, the tiny transmission
band is recognized as the second order FP resonance. For higher optical dispersion, this second
order FP band could even overlap the conduction band preventing then a clear interpretation of
the transmission diagram.

The impact of dispersion is nevertheless limited if the second order FP mode is centered on
λ0 because the numerator of Eq. (3) vanishes when Λ2 = λ0. A sharp pike appears in this case
obtained by tuning the reduce frequency to D/λ0 = 3/2 and by keeping fixed the other optical
parameters, Fig. 1c and 1d. Finally, the observation of a sharp transmission pike in the zero-
n̄ gap requires to simultaneously satisfies n̄ = 0 and FP resonance conditions. This may be a
challenge in dispersive PGBM since it amounts to precisely control the optical thicknesses of
the left- and right-handed layers.

3. Self-collimation and focusing effects in zero-average index materials

Recent experimental results reporting the propagation of sub-wavelength self-collimated beams
over several millimeters have shown a new type of beam shaping principle [7]. Self-collimation
originally discovered in positive index 2D photonic crystal is understood thanks to the analysis
of photonic surface dispersion [12]. When flat iso-frequency curves are considered, all the
Bloch waves forming the beam are propagated with parallel group velocities. If this analysis
applies for photonic conduction bands, it is not suitable for defect modes lying in photonic band
gaps. FP modes in the zero-n̄ gap are in particular delocalized modes spreading in the entire
structures and are consequently characterized by a singular frequency and a discrete couple
set of Bloch wavevectors. These specific properties prevent the use of the classical dispersion
surface analysis for predicting the beam propagation dynamic in PBGM supporting FP states.
We address this problem by considering a model based on a beam propagation theory and we
demonstrate beam shaping properties in zero-average index materials. For that purpose, the
second FP modes is considered and index dispersion is controlled by fixing Λ2 = λ0. Since
transmission almost attains 100%, only forward waves need to be considered and reflections at
the layers interfaces are neglected. An incident Gaussian beam Ui(x,y = 0) = exp(−(x/W0)

2)
of waist W0 and centered on the first layer at y = 0 is launched inside the crystal consisting
in N periods. This beam can also be represented by the following Fourier integral: Ui(x,y) =∫ ∞
−∞ Ui(α)exp(iβ (α)y)exp(iαx)dα , α and β being the propagation constants in the x- and y-

direction respectively with β =
√
(ωn1/c)2 −α2. To derive an analytical formulation of the

beam at the output interface y = L (with L = ND), the electromagnetic field is expressed as
the inverse Fourier integral [13] of the product of the incident field Fourier transform with the
phase propagator operators of each layers [14] :

U(x,L) = T F−1{Ui(α)(P1(α,d1)P2(α,d2))
N} . (4)

Here Ui(α) = (W0/(2
√

π)exp(−(αW0/2)2) and the phase propagator in the layer of optical
index ni is Pi(α,y) = exp(iβi(α)y) where βi =

√
(ωni/c)2 −α2 with i = 1,2. When α �

ω
c ni, the paraxial assumption holds and the phase propagator becomes Pi(α,y) = exp(iy(ω

c ni −
α2

2ni

c
ω )). Plugging this expression in Eq. (4) gives:

U(x,L) = T F−1{Ui(α)P̃(α,D)N} . (5)
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Here P̃(α,y) = exp(iy(ω
c n̄− α2

2
c
ω
〈

1
n

〉
)) is the average phase operator expressed in terms of

average index n̄ and harmonic average index
〈

1
n

〉
= 1

D

∫ D
0

dx
n(x) over the crystal period. It is worth

noticing that the PBGM can be seen as an equivalent medium provided that the two kinds of
average optical indices are considered. Equation (5) allows us to derive the expression of the
beam at the PBGM exit:

U(x,L) =
W0

ω̄(L)
e
−
(

x
W (L)

)2

ei ω
c 〈n〉Leiϕ(x,L), (6)

where the complex functions ω̄(L) and ϕ(x,L) are given by: ω̄(L) = (W 2
0 + 2iL

〈
1
n

〉
)1/2 and

ϕ(x,L) =
〈

1
n

〉
2x2L/ ¯|ω(L)2|2. It is seen that the waist of the beam at L = ND takes almost a

common form:

W (L) =W0

√

1+θ 2
0 (ND)2

〈
1
n

〉2

, (7)

θ0 = λ/(πW 2
0 ) being the diverging angle. However, conversely to positive index photonic crys-

tal, PBGMs enable to cancel the harmonic average index
〈

1
n

〉
. Therefore when

〈
1
n

〉
= 0, the

beam is refocused after each unit cell and exits the device with its initial waist W0. Finally,
self-collimation effect for FP modes lying in zero-n̄ gap occurs when:

d1

n1
+

d2

n2
= 0. (8)

This additional optical condition combined with the zero average index one n̄ = 0 implies
that the layers thicknesses are equal and that opposite refraction indices are considered, i.e.
d1 = d2 and n1 = −n2. We note that these conditions,

〈
1
n

〉
= 0 and n̄ = 0, can be achieved

when η1 �= η2. This proves that zero-average index materials supporting FP modes can propel
self-collimated beams. This case is illustrated with a PBGM supporting a second order FP
mode in the zero-n̄ gap, Fig. 2a. Self-collimation is observed throughout 200 unit cell for an
incident Gaussian beam of waist W0 = 5λ . Another consequence of using FP resonances is
the exact phase compensation of the propagated field along the PBGM. Equation (7) actually
shows that when

〈
1
n

〉
= 0 and n̄= 0, the outgoing beam is exactly identical to the incident beam:

U(x,L) = Ui(x,0). The incident beam is then translated through the PBGM without suffering
from phase difference and beam spreading.

Remark that in V. Mocella’s and co-authors experimental demonstration, self-collimation has
been achieved with propagating Bloch modes instead of FP modes lying in the zero-n̄ gap [7].
Indeed, the reported sub-wavelength self-collimation mechanism has been obtained by almost
matching the layer impedances (η1 � η2) i.e. when the zero-n̄ gap is expected to nearly close.
However, in this experiment, the optical parameters were chosen to satisfy Eq. (8), showing
that this optical condition also applies outside the zero-n̄ gap.

Let us now demonstrate focalization properties in zero-average index materials. Consider
a PBGM embedded in a homogenous medium of index n0 and illuminated with an incident
Gaussian beam shifted away from the input interface by a distance f . For sketch of simplicity
the exterior medium is air so that n0 = 1. The beam computed at a distance f ′ of the exit layer
is obtained by applying the propagator operator P0(α,y) to the beam in the object and image
planes. Equation (5) now becomes:

U(x,L) = T F−1{Ui(α)P0(α, f )P̃(α,D)NP0(α, f ′)
}
, (9)

where P0(α,y)= exp(iy(ω
c n0− α2

2n0

c
ω )). By solving Eq. (9) one can derive the waist at the image

distance:

W ( f ′) =W0

√

1+θ 2
0

(
f

n0
+ND

〈
1
n

〉

+
f ′

n0

)2

. (10)
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Fig. 2. Modulus of the field when a PBGM, embedded in a air-medium (n0 = 1), is illumi-
nated by a beam. (a) The parameters of the PBGM are N = 200, d1 = d2 = D/2, n1 = 2,
n0

2 = −2, η1 = 1, η2 = 0.5 and D = λ0. (b) The parameters of the PBGM are N = 400,
d1 = D/3, d2 = 2D/3, n1 = 1, n0

2 =−0.5, η1 = 1, η2 = 0.5 and D = 3λ0.

The beam is then focused when W ( f ′) =W0, i.e. if the foci satisfy the following optical condi-
tion:

f + f ′ =−ND

〈
1
n

〉

n0. (11)

This condition shows that PBGMs behave as a flat lens when the harmonic average index
〈

1
n

〉
is

negative even when the average index n̄ is kept to zero. A -1 harmonic average index can in par-
ticular be obtained for a low metamaterial optical index value of n0

2 =−0.5 when the following
parameters are chosen: n1 = −2n2 and d2 = 2d1. This focusing property is demonstrated with
the second order FP mode obtained at the reduce frequency D/λ0 = 3 and for an incident Gaus-
sian beam presenting a waist W0 = 10λ0, Fig. 2b. In accordance to Eq. (11), a symetric image
of the incident beam is formed when f = f ′ = ND/2. Despite evanescent waves are not relied
over the structure, the full width at half maximum (FHWM) of the exit beam attains 1.06W0

showing an excellent focalization power of PBGM even after hundred of wavelengths. Remark
that these beam shaping are obtained when the impedance mismatch between two consecutive
layers is weak. When larger impedance mismatch is considered, the quality of these optical
effects decreases since backwards waves interfere more strongly with forward waves.

4. Conclusion

We have shown that index dispersion plays in crucial role for obtaining resonance states in
zero-average index 1D photonic crystals. It is demonstrated that an allowed band appears in the
zero-n̄ gap instead of a sharp pike when the FP resonance condition is not exactly satisfied. Self-
collimation and focusing effects have been next demonstrated in PBGM supporting FP states
lying in the zero-n̄ gap. These beam shaping properties are understood by introducing a har-
monic average index parameter. Despite the null average index condition holds, self-collimation
or focalization are obtained when the harmonic average index is either null or negative. Up to
date, PBGMs are unique optical devices which present a resonant self-collimation effect inside
a photonic band gap.
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