
MASTER AUTOMATIQUE ET SYSTEME DE PRODUCTION

SPECIALITE ARTS

ANNÉE 2005 – 2006

rapport de Master ASP

Présenté par

Sébastien LENGAGNE
Le mardi 19 septembre 2006

TITRE

Optimisation de mouvement multi-contacts
pour le robot HRP-2

JURY

Président : Wisama KHALIL Professeur
Examinateurs : Abdelhamid CHRIETTE Maître de conférences

Yannick AOUSTIN Maître de conférences
Chrisitine CHEVALLEREAU Chargé de recherche

Encadrants: Sylvain MIOSSEC (JRL, Japon) & Yannick AOUSTIN

Laboratoire : Joint Robotics Laboratory : AIST Tsukuba (Japon)

MASTER AUTOMATIQUE ET SYSTEME DE PRODUCTION

SPECIALITY ARTS

YEAR 2005 – 2006

Master ASP thesis

Presented by

Sébastien LENGAGNE

on Tuesday, september the 19 th 2006

TITLE

Multi-contact motion optimization for
HRP-2 robot

BOARDS OF EXAMINERS

President : Wisama KHALIL Professeur
Examiners : Abdelhamid CHRIETTE Maître de conférences

Yannick AOUSTIN Maître de conférences
Chrisitine CHEVALLEREAU Chargé de recherche

Thesis supervisors:Sylvain MIOSSEC (JRL, Japan) & Yannick AOUSTIN

Laboratory : Joint Robotics Laboratory : AIST Tsukuba (Japan)

Contents

1 AIST and HRP-2 presentation 6
1.1 AIST . 6
1.2 JRL . 6
1.3 HRP-2 robot . 6

2 Presentation of motion optimization problem 8
2.1 Introduction .. . 8
2.2 Objective function 8
2.3 Constraints .10

2.3.1 Joints limits .10
2.3.2 Torques limits .10
2.3.3 No sliding constraint .. . 10
2.3.4 No turn over constraint .. . 11
2.3.5 Bodies constraint .11

2.4 Problem parameters 12

3 One contact motion optimization 13
3.1 Introduction .. . 13
3.2 Dynamic equation .. . 13

3.2.1 Dynamic model . 13
3.2.2 First recursion .14
3.2.3 Second recursion .15
3.2.4 Computation of dry friction .. . 15

3.3 Gradient dynamic equation 16
3.3.1 First recursion .16
3.3.2 Second recursion .16

3.4 Optimization algorithm 17
3.4.1 Optimization functions 17
3.4.2 Algorithm . 17

3.5 Configuration optimization 17
3.5.1 Usefulness . 17
3.5.2 Computation simplification 17
3.5.3 Results . 18

4 Multi-contact motion optimization 19
4.1 Contact definition .. . 19
4.2 Difference between one contact optimization 19

4.2.1 Dynamic model . 19
4.2.2 Computation ofJ1 . 20
4.2.3 Computation ofJ2 . 20

1

4.3 Contact forces optimization 21
4.3.1 Choices for optimization .. . 21
4.3.2 Including contact forces 21
4.3.3 Contact forces as splines .. . 21
4.3.4 Local optimization for contact forces 22
4.3.5 Algorithm . 27

5 Results 29
5.1 Computation time .. 29
5.2 Throwing motion .. 30

2

List of Figures

1.1 HRP-2 picture (from http://www.kawada.co.jp) 7

2.1 Electric scheme of motors 9
2.2 Power assesment .. 9
2.3 Friction cone. .. . 10
2.4 Zero Moment Point : ZMP. .. . 11
2.5 Bsplines. .12

3.1 First recursion with left foot as reference body 14
3.2 Second recursion with left foot as reference body 15
3.3 Exact dry friction 16
3.4 Computed dry friction 16
3.5 Algorithm for one contact motion optimization 18

4.1 Example for J1 computation 20
4.2 Motion optimization algorithm with contact forces compute with splines 22
4.3 Motion optimization algorithm with local contact forces optimization 28

5.1 Computation time for one-contact motion optimization 29
5.2 Computation time for multi-contact motion optimization. 29

3

Acknowledgement

• This research is supported by grants from the ImmerSence EU CEC project, Contract No.
27141 (FET Presence) under the 6th Researh program.

• I would like to thank Yannick AOUSTIN who gave me the opportunity to do my training
period about HRP-2 Robot in Tsukuba (Japan), though I was to do it at Nantes.

• Thanks Sylvain MIOSSEC, my supervisor, for offering me this training period and for all
the talks we had, which allowed me to learn a lot about research methods and knowledge in
robotics.

• I would like to thank also Mr. Abderrahmane KHEDDAR and Dr Kazuhito YOKOI for their
cheerful greetings in the laboratory.

• Thanks all the trainees and the staff members of the laboratory.

• I would like to thank all the table tennis players in the AIST association for all the entertain-
ment they gave me.

4

Introduction

For my master degree I did my training period in the Joint french-japanese Robotics Laboratory
(JRL) , in the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba
(Japan). My work was about multi-contact motion optimization for the HRP-2 robot.

When I began my training period there was an optimization program which computes optimal
one-contact motion. So it was possible to define some motions, as kicking motion. My work was
to modify this program to optimize a multi-contact motion. With several contacts the robot will be
able to do more different motions, as leaning on a table to catch objects or throwing small objects.

For a one-contact configuration, we can compute a unique value for the torques and for the
forces applied by the robot to the environnement. But for a multi-contact configuration, the system
has less degrees of freedom, and becomes over-actuated. Therefore the torques and contact forces
are dependant, and one can express torques in function of contact forces. So the torques values
are not unique. Therefore it is necessary to compute the bestvalue of contact forces wich allow to
minimize an objective function.

First we will present the AIST, the JRL and the HRP-2 robot. Thenwe will define the motion
optimization problem, and how to compute the different values for a one-contact motion. Next we
will present the different methods to get the contact forces, and to compute the torques values and
gradient we used in the optimization. Finally we will show the computation time for those methods,
and we will present how to optimize a throwing motion.

5

Chapter 1

AIST and HRP-2 presentation

1.1 AIST

Fifteen japanese research institutes were consolidated asof April 1, 2001 to found the National
Institute of Advanced Industrial Science and Technology (AIST).

AIST has about 2,500 research scientists and conducts research and development that partly
contribute to the japanese economic and industrial administration of the Ministry of Economy,
Trade and Industry.

Though the scope of AIST includes the contributions to the administration, AIST is an indepen-
dent research institute mainly funded by the government.

AIST consists of about 60 research institutes and centers, each of which is in charge of specific
research missions.

1.2 JRL

The “Intelligent Systems Research Institute” (ISRI) of the AIST and “le Département des Sci-
ences et Technologies de l’Information et de la Communication” (STIC) of “le Centre National
de la Recherche Scientifique” (CNRS) have set up a joint researchlaboratory, named ISRI/AIST-
STIC/CNRS Joint Japanese-French Robotics Laboratory (JRL). TheAIST and the CNRS have con-
cluded a comprehensive research collaboration agreement on November 22, 2001. The foundation
of the JRL is a part of research efforts in specific areas under this agreement.

The JRL is operated in all aspects on the basis of bipolar management. The research base in
Japan (JRL-Japan) is located in AIST Tsukuba Research Center, and the France side (JRL-France)
is located in the Laboratory for Analysis and Architecture of Systems (LAAS)-CNRS in Toulouse.

Both research bases are operated by joint funding from the ISRI/AIST and the CNRS, and
mixed Japanese-French teams work in cooperation at both bases.

In order to effectively integrate individual research efforts of Japanese and French scientists, a
humanoid robot HRP-2, is used in both bases as a common experimental platform.

1.3 HRP-2 robot

HRP-2 is the final robotic platform for the Humanoid Robotics Project headed by the Manufac-
turing Science and Technology Center (MSTC), which are sponsored by the japanese Ministry of
Economy, Trade and Industry (METI) through New Energy and Industrial Technology Develop-
ment Organization (NEDO).

6

The total robotic system was designed and integrated by Kawada Industries, Inc. together with
Humanoid Research Group of AIST.

HRP-2’s height is 154 cm and weight is 58 kg including batteries. It has 30 degrees of freedom
(DOF) including two DOF for its hip. The cantilevered crotchjoint allows it to walk in a con-
fined area. Its highly compact electrical system packaging allows it to forget the commonly used
"backpack" used on other humanoid robots.

The external appearance of HRP-2 was designed by Mr. Yutaka Izubuchi, a mechanical ani-
mation designer famous for his robots that appear in Japanese comics. Mr. Izubuchi also named
HRP-2 "Promet."

HRP-2 will be used for experiments to further develop robotictechnologies in the areas of
"walking on uneven surfaces," "tipping-over control," "getting up from a fallen position," and
"human-interactive operations in open spaces." It will alsobe used for another 5-year "Key Tech-
nology Research Promotion Program," entitled "Key Technology Research and Development for
Humanoid Robot Operating in Actual Environments." This project is also sponsored by METI and
NEDO, spearheaded by Kawada Industries and supported by AIST and Kawasaki Heavy Industries,
Inc.

Meanwhile, Kawada Industries will start renting HRP-2 as a humanoid robot R&D platform.
Internal API for HRP-2 is expected to be available to the public and its users will be able to develop
their own software. It is anticipated that HRP-2s will greatly enhance humanoid robot technology
research activities.

Figure 1.1: HRP-2 picture (from http://www.kawada.co.jp)

7

Chapter 2

Presentation of motion optimization
problem

2.1 Introduction

The optimization problem is to minimize an objective function taking into account several con-
straints.

min
x∈Rn

f(x) (2.1)

with :
gin(x) ≤ 0 (2.2)

geq(x) = 0 (2.3)

xmin ≤ x≤ xmax (2.4)

Wherex is the input data vector.f(x) is the objective function and is defined according to
the application. For example it can be the difference between a reference motion and the optimal
robot motion, the time or the energy consumption (in our case). gin(x),geq(x) are the inequality and
equality constraints during the motion, they can inlcude the limits for x values.

2.2 Objective function

The objective functionf(x) is to minimize the electrical energy consumption of the robot. This
energy is expressed like this :

E =
Z

∑Pi(t)dt (2.5)

We discretize this energy :

E =
t f

∑
t=0

∑
i

Pi(t)∆t (2.6)

WherePi(t) is the instantaneous power in joint i motor.
We will explain how to compute this electrical power. We consider the equivalent electric

scheme as shown in figure (2.1).
From this scheme we can compute the electrical power in the motors and get the power asses-

ment (2.2) :
Pelec= Pmec+Pf +PR (2.7)

8

Figure 2.1: Electric scheme of motors

Pelec=
(

Γ+Frott(Ω)

)

Ω+RI2 (2.8)

With I = Γem
Kem

, E = KemΩ , Kem is the motor electromagnetic coefficient andΓem= Γ+Frott(Ω)

the electromagnetic torques.

Pelec= ΓemΩ+
RΓ2

em

K2
em

(2.9)

Figure 2.2: Power assesment

• Pelec : Electrical power (input of the motor).

• Pem : Eletro-magnetic power.

• Pmec: Mechanical power (output of the motor).

• PR : Electrical power lost in Resistor by Joule effect.

• Pf : Mechanical power lost due to friction.

Due to the power supply system, the input electrical powerPeleccannot be negative. Therefore,
we can only supply the motors and we cannot get power back. If one motor gets energy back, we
cannot store it and it is lost. That is why we will implement this equation :

P = max(Pelec,0) = max

(

ΓemΩ+
RΓ2

em

Kem2 ,0

)

(2.10)

9

2.3 Constraints

2.3.1 Joints limits

The joints limits are the minimal and maximal values for eachangle value of the robot. These limits
depend on the mechanical system of the robot.

qL
i ≤ qi ≤ qU

i (2.11)

2.3.2 Torques limits

The motors have several physical limits. These limits are determined by the supply system or the
own caracteristic of the motor. The temperature in the motoris the main reason to put limits. The
temperature is linked to the torques, we can choose to monitor the temperature, but, to make it
easier, we can consider a constant limit for each torque.

ΓL
i ≤ Γi ≤ ΓU

i (2.12)

In our case, we do not worry about torques limits in the optimization problem, we check the
torques cannot damage the motors.

2.3.3 No sliding constraint

We want to control the robot during all the motion. Thus, we impose a no-sliding constraint for all
the contact points. The no-sliding constraint is characterized by the friction cone :

Figure 2.3: Friction cone.

Mathematicaly we can compute the friction cone constraint like this :
√

F2
x +F2

y ≤ σFz (2.13)

But the optimization program needs the derivate of this equation :

(

√

u(x)

)′
=

u′(x)
2√u(x)

(2.14)

To deal with numerical error whenu(x) = F2
x +F2

y ≈ 0 we choose to transform this equation :

F2
x +F2

y ≤ σ2F2
z (2.15)

10

2.3.4 No turn over constraint

To ensure a good control of the robot we impose no take off of the contact surface and no turn over
the edges of the surface contact. To ensure this, we compute the Zero Moment Point (ZMP) and the
forceFR applied on ZMP that results of forcesf and momentam which are imposed at the origin
of each contact surface.FR must stay in the contact surface:

Figure 2.4: Zero Moment Point : ZMP.

We compute the positionPX,PY of FR thanks to :

~MR = ~m− ~OP∧~f =~0 (2.16)

with :

~m=

Mx

My

Mz

 ; ~OP=

Px

Py

0

 ;~f =

Fx

Fy

Fz

 (2.17)

Finally we get :

Px = −
My

Fz
;Py =

Mx

Fz
(2.18)

If we assume a rectangular contact surface, we have this inequality:

xmin ≤−
My

Fz
≤ xmax (2.19)

ymin ≤
My

Fz
≤ ymax (2.20)

But to have linear constraints we consider these equations, and we considerFz ≥ 0 to get an
unilateral contact.

xminFz+My ≤ 0
xmaxFz+My ≥ 0
yminFz−Mx ≤ 0
ymaxFz−Mx ≥ 0

(2.21)

2.3.5 Bodies constraint

To optimize a motion, we impose some conditions on the position and orientation of several bodies.
These conditions can be inequality or equality constraintsfor the whole motion or only one instant.
These constraints are not the topic of the training period, to learn more about it one can refer to [1].

11

2.4 Problem parameters

The motion optimization is done by computing each joint value thanks to 9 splines parameterspi.
The robot has 30 joints, so we get an 270-parameters-optimization problem. We compute the joint
value thanks to these splines parameters :

q(t) =
9

∑
i=1

pi ∗bi(t) (2.22)

the spline functionsbi have the shape shown down :

Figure 2.5: Bsplines.

Those functions have several caracteristics

• The initial and final value, velocity and acceleration of each spline are equal to zero (except
the two first and the two last).

• At any moment joint values are expressed with only four splines parameters.

• The first spline starts with value, velocity and acceleration different from zero.

• The second one starts with velocity and acceleration different from zero, but the initial value
is equal to zero.

• The third one starts with an acceleration different from zero but the initial value and velocity
are null.

• Those conditions also are true for final values of the three last splines.

We consider that we start a motion with an initial and a final velocity and acceleration for all
joints equal to zero. Thus, it produces a relation between the three first parameters and the initial
value and between the three last parameters and the final value. So, we can reduce the number
of optimization parameters, for each joint, from 9 to 5 (3 splines parameters and initial and final
value). As such we get only 150 parameters for the joint values and if we choose to optimize the
motion duration we can add the time as a parameter.

12

Chapter 3

One contact motion optimization

3.1 Introduction

We consider that the contact body can be modelized by plane contact. We define two contact kinds:

• A bilateral contact is defined as a mechanical link between two bodies which cannot be
broken.

• A unilateral contact is defined as a link between two bodies which can be broken at any
moment.

We suppose that the contact is a bilateral one, neverthelesswe impose constraints on contact forces
to get unilateral one.

We have to choose which value we will optimize: the joint or the torque values. In the opti-
mization we will need those two values.

• If we choose to optimize the joint values we need to compute the inverse dynamics model to
compute the torques.

• If we choose to optimize the torques values we need to computethe direct dynamics model
to compute the joints.

[3] shows the inverse dynamics model is faster to compute than the direct dynamics model
because we need only 2 recursions (3 for direct dynamics model).

Therefore we choose to do an optimization on joints value.

3.2 Dynamic equation

3.2.1 Dynamic model

We compute the dynamic model of the robot through the following equation:

M(q)Ẍ +C(q,q̇) +G(q) =

[

Γ0(nb_ j×1)

0(6×1)

]

+

[

0(nb_ j×6)

I(6×6)

][

fext

text

]

(3.1)

WhereX = [q,x,y,z,θx,θy,θz]
T

To compute the torquesΓ0, the forcefext and the momentatext, we use the Newton-Euler algo-
rithm in absolute frame. This algorithm requires two recursions [4].

• the first recursion computes the position, velocity and acceleration of each robot body.

13

• the second recursion computes the forces and torques for each joint.

We only present the equations we use in the next part of this report. To know more one can look
at [4].

3.2.2 First recursion

The computation starts from the reference body of which we know the state (value, gradient and
hessian for position and orientation) to compute the state of the waist(1) . And starting from the
waist, we compute the state of all bodies (2,3,4,5) as shown in 3.1:

Figure 3.1: First recursion with left foot as reference body

We use equation of [5] to compute these values in an absolute frame. The mechanical system is
known therefore we can express the orientationR0 j and the positionP0 j of the link j, expressed in
the framea(j) through the position of the motorq j . (a(j) is the link antecedent of j).

So we can compute the bodies positionPj and orientationRj of joint j.

Rj = Ra(j)
R0 j (3.2)

Pj = Ra(j)
P0 j +Pa(j)

(3.3)

Then we computeswj andsvj for each joint.

swj = Ra(j)
axej (3.4)

svj = P(j)∧sw(j) (3.5)

• swj is the axis orientation of joint j:

• svj is the direction that is perpendicular to axis orientation and to vector ~OPj (O: origin of
absolute frame ;Pj : position of joint j in absolute frame)

Then we compute the velocity and acceleration of the position and orientation. These values
are not used later in this report, but one can look at [5].

14

3.2.3 Second recursion

The computation starts from the end of the limbs (except for the limb with the reference body).
Taking into account all the torques and all the external forces on bodies, we spread the torques and
forces applied by one link to the previous one until the waist(1,2,3,4). Then starting from the waist,
we compute all the torques and the forces until the referencebody (5). Therefore we get all the
joints torque value and the force and momenta applied by the robot to the environnement (here the
ground) as shown in 3.2.

Figure 3.2: Second recursion with left foot as reference body

The computed joint torques take into account the friction, and we obtain in fact the electro-
magnetical torques.

Γ j = sv(j)Fj +sw(j)M j −Γd j +µv j q̇ j (3.6)

With :

• Γd j dry friction torque of link j.

• µv j coefficient of viscous friction of link j.

• Fj resulting force applied on link j.

• M j resulting momenta applied on link j.

The resulting force and momenta depend on robot dynamic, gravity effect, external forces and
momentas [6].

3.2.4 Computation of dry friction

The dry friction effect produces a constant torque wich is opposed to the velocity of the joint.

Γd(q̇) = −Γd ∗sign(q̇) (3.7)

This function is not smooth, therefore it can produce problem during the optimization. We
approxime the dry friction effect with this equation:

Γd(q̇) = −Γd ∗
2
Π

arctan(νq̇) (3.8)

15

Figure 3.3: Exact dry friction

Whereν is a parameter. Ifν is small the computed torque is closed to the real torque.

Figure 3.4: Computed dry friction

3.3 Gradient dynamic equation

The optimization needs the torques gradient. In this part weonly present the equation we need later
in this report. To know more one can refer [4]. The way to compute the gradient is the same as to
compute the torques value. Therefore there are two recursions.

3.3.1 First recursion

To compute the gradient of position and orientation value, velocity and acceleration we use the
same algorithm but we add several equations :

∂Rj

∂p
=

∂Ra(j)

∂p
R0 j +Ra(j)

∂R0 j

∂p
(3.9)

∂Pj

∂p
=

∂Ra(j)

∂p
P0 j +

∂Pa(j)

∂p
(3.10)

Then we compute the gradient ofswj andsvj of each joint :

∂swj

∂p
=

∂Ra(j)

∂p
axej (3.11)

∂svj

∂p
=

∂P(j)

∂p
∧sw(j) +P(j)∧

∂sw(j)

∂p
(3.12)

3.3.2 Second recursion

To compute the electro-magnetic torques gradient we add those equations to the second recursion:

∂Γ j

∂p
=

∂sv(j)

∂p
Fj +sv(j)

∂Fj

∂p
+

∂sw(j)

∂p
M j +sw(j)

∂M j

∂p
+µv

∂q̇ j

∂p
(3.13)

16

3.4 Optimization algorithm

3.4.1 Optimization functions

To optimize the motion we use an optimization software : IPOPT (Interior Point Optimizer) [2].
IPOPT is available in FORTRAN and C++ version (we use C++ version). It is necessary to define
several functions to use IPOPT

• get_nlp_info : define the size of the problem (number variable, constraint)

• get_bounds_info : define the limits of variables and constraint.

• get_starting_point : define an initial value for variables or constraint multiplicator.

• eval_f : return the value of the criteria

• eval_grad_f : return the vector of the criteria gradient

• eval_g : return the values of the constraints

• eval_jac_g : return the structure and the value of the constraints’gradient.

• eval_h : return the value of the hessian (we can ask IPOPT to compute it by it-self)

• finalize_solution : get the value of the optimized variable with the value of constraints and
Lagrangian multiplicator.

3.4.2 Algorithm

The figure (3.5) shows the algorithm to find the optimal solution. It is not realy IPOPT algorithm
but it helps to understand the working of the computation.

3.5 Configuration optimization

3.5.1 Usefulness

To learn more about C++ and to understand the existing program, I started my training period by
implementing these configuration optimizations. This optimization computes the optimal joints
value in static case. Since the motion starts and finishes with joints velocity and acceleration equal
to zero, we can initialize the motion optimization with these configurations to increase the motion
optimization results quality.

3.5.2 Computation simplification

To compute the dynamic equation in static case, we do not worry aboutq̇ andq̈ values. We consider
that dry friction effect is opposed to the gravity effects. In static case, dry friction helps to minimize
the energy consumption.

17

Figure 3.5: Algorithm for one contact motion optimization

final criteria total computing time (sec)

with configuration optimization 14,80 169
without configuration optimization 16,35 126

Table 3.1: Optimization time with and without configurationoptimization

3.5.3 Results

We present the computation time and final criteria value for the same motion optimization, with dry
friction parameterν = 1

The motion optimization do 2000 iterations and returns the final criteria value. The configura-
tion optimization stops before the 2000 iterations.

We can see that the final criteria is better with configurationoptimization than without, even
if the computing time is bigger. That means we get a better local minimum thanks to a better
initialization of the motion optimization.

18

Chapter 4

Multi-contact motion optimization

4.1 Contact definition

To define a contact we need to do the equality between two frames:

• The frame on the body of the robot. The origin of this frame is in the contact surface.

• The frame on the environnement.

That is why we add position and orientation constraint for contact body frame.

4.2 Difference between one contact optimization

With several contact points, the contact forces are not unique, therefore there is not only one value
for the torques. We have to compute the best forces for all thecontact points to minimize the
objective function .

4.2.1 Dynamic model

We remember the dynamic equation for one contact motion :

M(q)Ẍ +C(q,q̇) +G(q) =

[

Γ0(nb_ j,1)

0(6,1)

]

+

[

0(nb_ j,6)

I(6,6)

][

fext

text

]

(4.1)

WhereX = [q,x,y,z,θx,θy,θz]
T

We can compute the torques through the dynamic equation of anb_c-contacts motion :

M(q)Ẍ +C(q,q̇) +G(q) =

[

Γ(nb_ j,1)

0(6,1)

]

+

[

J1(nb_ j,6×nb_c)

J2(6,6×nb_c)

]

fc1

tc1

...

fcnb_c

tcnb_c

(4.2)

note

Usually we use the jacobian transposedJT , but to simplify the notation we consider an other con-
vention, so we noteJ

19

4.2.2 Computation ofJ1

The matrixJ1 allows to compute the effects of the contact forces on the torques. The equation (3.6)
shows that this effect is due tosvj andswj values. Therefore we just need to put these values for
the joint which are between the contact body and the reference body. We take the example of a five
joints robot :

Figure 4.1: Example for J1 computation

JT
1 =

sv0(3×1) sv1(3×1) 0 0 0
sw0(3×1) sw1(3×1) 0 0 0

0 0 sv2(3×1) sv3(3×1) 0
0 0 sw2(3×1) sw3(3×1) 0

(4.3)

note

If svi andswi are computed when we start from the reference body to the waist, it is necessary to
replace them by−svi and−swi.

4.2.3 Computation ofJ2

J2 is used to compute the sum of all the contact forces in the absolute frame, therefore it contains
only transformation matrix between contct forces frame andabsolute frame.

J2 =
[

absTc1
absTc2 ... absTcnb_c

]

(4.4)

Where :
absTci =

[

Rci 0
[Pci]Rci Rci

]

(4.5)

with Pci andRci the position and orientation of the contact point in the absolute frame :

[P] =

0 −Pz Py

Pz 0 −Px

−Py Px 0

 (4.6)

20

4.3 Contact forces optimization

4.3.1 Choices for optimization

To include contact forces we need to find the forces that minimize the criteria. To do it, we have
the choice between

• Computing forces with splines parameters and add this parameters to the motion optimiza-
tion.

• Optimizing the contact forces at each iteration of the motion optimization.

The first method supposes that the forces have spline shape, so the solution will be less optimal,
but the computation time should be closed to one-contact motion optimization. The second one
computes the exact value of optimal contact forces, but it should be slower because each time we
need to know the torques we have to do a local optimization. Therefore we will compare this two
methods

4.3.2 Including contact forces

So with those two methods, we have to compute the torques value and gradient for multi-contact
motion.From equations (4.1) and (4.2) we get :

Γ = Γ0−J1Fc (4.7)

With Fc =
[

fc1, tc1, ..., fcnb_c, tcnb_c

]T
, fci : force on contact i,tci : momenta on contact i.

By derivate this equation, we find the torques gradient :

∂Γ
∂p

=
∂Γ0

∂p
−

∂F1

∂p
Fc−J1

∂Fc

∂p
(4.8)

4.3.3 Contact forces as splines

Computation of contact forces

With (4.1) and (4.2) we find the contact forces must verify this equation :

Fext = J2Fc =
[

J2,1...J2,nb_c
]

Fc1
...

Fcnb_c

(4.9)

To verify this equation we compute one contact force (6 values) thanks toFext and the other
contact forces as :

Fcnb_c = (J2,nb_c)
−1

(

Fext−
nb_c−1

∑
i=0

J2,iFci

)

(4.10)

For example, in a two-contacts motion (for example : 4.1), weconsider only one contact force as
splines and we compute the other.

In this case we compute one contact forceFc by using B-splines parameters with the same way
to joint value (2.22)

Fc1(t) =
9

∑
i=1

pi ∗bi(t) (4.11)

And to computeFc2 we use equation (4.10)

21

Torques value and gradient

So, with splines parameters we compute directly the gradient of Fc : ∂Fc
∂p = ∑9

i=1bi(t) except for the
last contact. To get the gradient of the last contact forces we derivate equation(4.10):

∂Fcnb_c

∂p
= (J2,nb_c)

−1

(

∂Fext

∂p
−

nb_c−1

∑
i=0

J2,i
∂Fci

∂p

)

(4.12)

Algorithm

Figure 4.2: Motion optimization algorithm with contact forces compute with splines

4.3.4 Local optimization for contact forces

Now we will explain the program with an internal optimization for contact forces, for this local
optimization we need to compute:

• the criteria.

22

• the gradient of the criteria with respect to the contact forces.

• the constraints.

• the gradient of the constraints with respect to the contact forces.

Criteria

The criteria is the same as in motion optimization, but we do not consider the friction because
friction depends on ˙q and not on the torques and so not on the contact forces. So friction adds con-
stant value that cannot be minimized. To simplify the notations we suppose the motors parameters
Ri
K2

i
= 1. Therefore the criteria is:

f(Fc) = ΓTΓ+ΓT q̇ (4.13)

f(Fc) = f = (Γ0−J1Fc)
T(Γ0−J1Fc)+(Γ0−J1Fc)

T q̇ (4.14)

Gradient of criteria

We compute the gradient of the criteria∇ f :

∇ f =
∂
(

ΓTΓ
)

∂Fc
+

∂ΓT q̇
∂Fc

(4.15)

We impose that∇ f is a vertical vector with 6×nb_c values, so :

∇ f = 2Γ
∂ΓT

∂Fc
+

∂ΓT

∂Fc
q̇ (4.16)

∇ f = 2(Γ0−J1Fc)
(

−JT
1

)

−JT
1 q̇ (4.17)

∇ f = 2(−Γ0JT
1 +J1FcJ

T
1)−JT

1 q̇ (4.18)

Constraints

For this optimization we have only three kinds of constraint:

• from (4.1) and (4.2) we get a dynamics equation equality constraint : Fext = J2Fc

• friction inequality constraint :f 2
x + f 2

y ≤ σ2 f 2
z

• ZMP inequality constraint :xmin ≤− ty
fz
≤ xmax andymin ≤ tx

fz
≤ ymax

To impose an unilateral contact we add a constraint :Fz ≥ 0
The constraint vector contains only value of active constraints, but we show it when all con-

straints are active:

g(Fc) = g =

(J2Fc−Fext = 0)(6,1)
(

fxi
2 + fyi

2−σ2
i fzi

2 ≤ 0
)

(nb_c,1)

xmin fz+ ty ≤ 0
xmaxfz+ ty ≥ 0
ymin fz− tx ≤ 0
ymaxfz− tx ≥ 0

(4×nb_c,1)

(4.19)

Therefore the constraint vector size is 6+5×nb_c .

23

Gradients Constraints

We compute∇g,the gradient of the active constraints as a matrix of which the size is(6+5×nb_c,6×nb_c)
values.

∇g =

(J2)(6,6×nb_c)
(

2 fxi 2 fyi −2σ2
i fzi 0 0 0

)

(nb_c,6×nb_c)

0 0 xmin 0 1 0
0 0 xmax 0 1 0
0 0 ymin −1 0 0
0 0 ymax −1 0 0

(4×nb_c,6×nb_c)

(4.20)

Optimality conditions

If the local optimization converges, it returns contact forcesFc wich satisfy the KKT conditions [2]:

∇ f(Fc) +∇g(Fc)λ−z= 0 (4.21)

g(Fc) = 0 (4.22)

g and∇g contain the value of the active constraints. In our case, there is no limit for the input
valuesFc, therefore the optimization program will return the input Lagrangian multiplicatorz≈ 0,
that is why we can simplify this equation:

∇ f(Fc) +∇g(Fc)λ = 0 (4.23)

g(Fc) = 0 (4.24)

Therefore the local optimization returns the contact forces Fc but we need to compute the gra-
dient of contact forces with respect to the motion optimization parameters∂Fc

∂p .

Derivative of optimality condition

We derivate optimality condition equation to find :

∂∇ f
∂p

+
∂(∇gλ)

∂p
= 0 (4.25)

∂g
∂p

= 0 (4.26)

Computation of ∂∇ f
∂p

∇ f = 2(−Γ0JT
1 +J1FcJ

T
1)−JT

1 q̇ (4.27)

∂∇ f
∂p

= 2

(

−
∂(Γ0JT

1)

∂p
+

∂(J1FcJT
1)

∂p

)

−
∂(qJT

1)̇

∂p
(4.28)

We want ∂∇ f
∂p to have a(6× nb_c,nb_p) size. To get the equation easier we will compute the

gradient for only one parameterpi.

∂∇ f
∂pi

= −2
∂Γ0

∂pi
JT

1 −2Γ0
∂JT

1

∂pi
+2

∂J1

∂pi
FcJ

T
1 +2J1Fc

∂JT
1

∂pi
+2J1

∂Fc

∂pi
JT

1 −
∂JT

1

∂pi
q̇−JT

1
∂q̇
∂pi

(4.29)

We know from the one contact dynamic model :

24

• Γ0 : vector with size :(nb_ joints) .

• ∂Γ0
∂pi

: matrix with size(nb_ joints,1).

• q̇ : vector with size(nb_ joints).

• ∂q̇
∂pi

: matrix with size(nb_ joints,1).

We know from the contact optimization :

• J1 : matrix with size:(6×nb_c,nb_ joints).

• Fc : vector with size:(6×nb_c).

We can easily compute∂J1
∂pi

: matrix (6×nb_c,nb_ joints), by replacingsvj andswj by ∂svj
∂pi

and
∂swj
∂pi

. If we consider example of fig (4.1) we compute :

∂JT
1

∂pi
=

∂sv0
∂pi

∂sv1
∂pi

0 0 0
∂sw0
∂pi

∂sw1
∂pi

0 0 0

0 0 ∂sv2
∂pi

∂sv3
∂pi

0

0 0 ∂sw2
∂pi

∂sw3
∂pi

0

(4.30)

There is only one unknown value
(

∂Fc
∂p

)

, therefore we can get an easier shape of equation(4.29):

∂∇ f
∂pi

= Ai∇ f +Bi∇ f
∂Fc

∂pi
(4.31)

Computation of ∂(∇gλ)
∂p

The program has to take into account the active constraints.Here we assume that all constraints are
active and we show how to compute the different values :

∇g =

(J2)(6,6×nb_c)
(

2 fxi 2 fyi −2σ2
i fzi 0 0 0

)

(nb_c,6×nb_c)

0 0 xmin 0 1 0
0 0 xmax 0 1 0
0 0 ymin −1 0 0
0 0 ymax −1 0 0

(4×nb_c,6×nb_c)

(4.32)

The equation is :
∂(∇gλ)

∂p
=

∂(∇g)

∂p
λ+∇g

∂(λ)

∂p
(4.33)

λ is given by the optimization program, and we want to know :∂(λ)
∂p . We consider only one

derivative parameterpi .

∂(∇g)

∂pi
λ =

(

∂J2
∂pi

)

(6,6×nb_c)
(

2
∂ fxi
∂pi

2
∂ fyi
∂pi

−2σ2
i

∂ fzi
∂pi

0 0 0
)

(nb_c,6×nb_c)

(0)(4×nb_c,6×nb_c)

[λ](6+5×nb_c) (4.34)

25

We note thatJ2 depends only on the contact position, wich one are constant,therefore∂J2
∂p = 0

We can see∂(∇g)
∂pi

λ is different from zero only for friction constraint, we modify this equation to
obtain :

(

∂(∇g)

∂pi
λ
)

f ric
= Bf ric(nb_c,nb_pi)

∂Fc

∂pi
(4.35)

with :

Bf ric =

2λ f ric1 2λ f ric1 −2σ2
1λ f ric1 ... 0 0 0 ...

0 0 0 ... 2λ f ric2 2λ f ric2 −2σ2
2λ f ric2 ...

...

 (4.36)

Finally we get :
∂(∇gλ)

∂pi
= Bi∇g

∂Fc

∂pi
+Ci∇g

∂λ
∂pi

(4.37)

with :Bi∇g =

0(6,1)

Bf ric(nb_c,1)

04×nb_c,1

 andCi∇g = ∇g.

Computation of ∂g
∂p

g =

(J2Fc−Fext)(6,1)
(

fxi
2 + fyi

2−σ2
i fzi

2
)

(nb_c,1)

xmin fz+ ty
xmaxfz+ ty
ymin fz− tx
ymaxfz− tx

(4×nb_c,1)

(4.38)

∂g
∂p

=

(

J2
∂Fc
∂pi

− ∂Fext
∂pi

)

(6,nb_p)
(

2 fxi

∂ fxi
∂p 2 fyi

∂ fyi
∂p −2σ2

i fzi

∂ fzi
∂p

)

(nb_c,nb_p)

xmin
∂ fz
∂p +

∂ty
∂p

xmax
∂ fz
∂p +

∂ty
∂p

ymin
∂ fz
∂p − ∂tx

∂p

ymax
∂ fz
∂p − ∂tx

∂p

(4×nb_c,nb_p)

= [0](6+5×nb_c,nb_p) (4.39)

We can transform it to get an equation for one derivate parameter pi:

∂g
∂pi

=

(J2)(6,1)
(

.. 2 fxi 2 fyi −2σ2
i fzi 0 0 0 ..

)

(nb_c,1)

.. 0 0 xmin 0 1 0 ..

.. 0 0 xmax 0 1 0 ..

.. 0 0 ymin −1 0 0 ..

.. 0 0 ymax −1 0 0 ..

(4×nb_c,1)

6+5×nb_c,1

∂ f0
∂pi
∂t0
∂pi

...
∂ fnb_c

∂pi
∂tnb_c
∂pi

−

(

∂Fext
∂pi

)

6,1
(0)nb_c,1

(0)4×nb_c,1

= 0

(4.40)

26

We see this expression is of the shape:

∂g
∂pi

= Big
∂Fc

∂pi
+Aig = 0 (4.41)

Computation of ∂Fc
∂p and ∂Γ

∂p

We remember the derivate of optimiality condition :

∂∇ f
∂p

+
∂(∇gλ)

∂p
= 0 (4.42)

∂g
∂p

= 0 (4.43)

We consider only one derivative parameter and we replace theelements with their values :

Ai∇ f +Bi∇ f
∂Fc

∂pi
+Bi∇g

∂Fc

∂pi
+Ci∇g

∂λ
∂pi

= 0 (4.44)

Big
∂Fc

∂pi
+Aig = 0 (4.45)

We assemble these two equations and we get a equation system :

Bi
∂Fc

∂pi
+Ci

∂λ
∂pi

= Ai (4.46)

with : Bi =

[

Bi∇ f +Bi∇g
Big

]

, Ci =

[

Ci∇g
0

]

andAi =

[

−Ai∇ f
−Aig

]

.

TheBi andCi matrix are the same for all parameterspi, that’s why to decrease the computing
time, we can gather them and reverse it one time to find the solution:

[

Bi Ci
]

[

∂Fc
∂pi
∂λ
∂pi

]

= Ai (4.47)

Therefore, after solving this equation with a classical algorithm for all parameters we obtain the
value of : ∂Fc

∂p , then we can compute :∂Γ
∂p with eq(4.8).

4.3.5 Algorithm

The algorithm for a multi-contact motion optimization witha local optimization of contact forces
is shown in fig (4.3)

27

Figure 4.3: Motion optimization algorithm with local contact forces optimization

28

Chapter 5

Results

5.1 Computation time

We will present the optimization computation time for a one-contact motion (5.1) and a multi-
contact motion (5.2) with different choices.

Figure 5.1: Computation time for one-contact motion optimization

Figure 5.2: Computation time for multi-contact motion optimization

We can see the dynamics model is very slow with a local optimization, whereas when we
compute the contact forces as splines the dynamic model is asfast as in one-contact motion.

When we do a local optimization we need to use an appropriate program, we can see IPOPT is
very slow for this optimization whereas Knitro and FSQP are abit faster. We plan to test anu other
program, such as SOCP, to decrease the computation time .

The optimization computation time for multi-contact motion is only evaluated, because we get
some troubles to test it. With the local optimization, we didn’t test it because the computation time
would have been too long. And in the case of contact forces as splines we didn’t have enough time
to finish the implementation.

29

5.2 Throwing motion

We present an example for motion optimization. We choose a throwing motion. To optimize this
motion we need to add these constraints :

• Position and orientation constraint on contact bodies.

• Velocity constraint on the hand at one instant , with position constraint.

For the moment we have programming trouble, so we cannot optimize this motion yet, but we
hope we can do it for the presentation.

30

Conclusion

We have shown that, for a multi-contact motion, we need to take into account the contact forces to
compute the dynamic model. The contacts create redundant closed chain, so we have to optimize
the contact forces to minimize the torques and so the energy consumption of the robot. To do this
optimization, we can add optimization parameters to compute those contact forces, or do a local
optimization. The local optimization is very slow to compute but return an optimal value for all the
instants, on the contrary computing the contact forces thanks to parameters is faster. Nevertheless
we assume we know the shape of this contact forces but we are not sure this shape is the real one.
So we have to choose between the computation time and the optimality of the motion.

With only one contact the robot cannot execute a lot of motion. Therefore this multi-contact mo-
tion optimization allows to increase the range of the feasible optimal motion. Some programming
trouble prevented us to present an optimal throwing motion yet.

31

Bibliography

[1] S. MIOSSEC, K. YOKOI, and A. KHEDDAR, “Developpment of software or motion opti-
mization of robots - application to the kick motion of the hrp-2 robot,” Submitted to Robio,
2006.

[2] Introduction to IPOPT : a tutorial for downloading, installing and using IPOPT.

[3] O. von Stryk, “Optimal control of multibody systems in minimal coordinates,”Zeitschrift für
Angewandte Mathematik 78, 1998.

[4] S.-H. Lee, J. Kim, F. Park, M. Kim, and J. E. Bobrow, “Newtom-type algorithms for dynamics-
based robot movement optimization,”IEEE Transactions on robotics, 2005.

[5] R. Featherstone,Robot Dynamics Algorithms. Kluwer Academic Publishers, 2003.

[6] W. Khalil and E. Dombre,Modélisation, identification et commande des robots. Hermès,
1999.

32

Summary

English summary

During this training period I had to modify a one-contact motion optimization program to optimize
a multi-contact motion that will allow to increase the rangeof the possible optimal motions.

First, we studied the working of a one contact motion optimization, thus, next we highlighted
what we have to modify to do a multi-contact optimization. Asthere are several contacts, a close
chain appears in the dynamic model. Moreover, humanoid robots are highly redundant, so that the
close chain is over-actuated. So, we had to find out the best torques possible in this chain. For
that operation, we optimized the contact forces of the robotwith its environment. We faced two
possibilities for that optimisation :

• Either, approximate those contact forces with a parameterized function (those parameters will
be added to the initial parameters of the motion optimisation)

• Or, operate an internal optimization which will return the optimal value of the contact forces
each time we need to know the torques.

In that report, we compare the proprieties of those two methods and mostly the computation time
which can cover a period ranging from only a few minutes to some days. This laps of time de-
pends not only on the method used but also on the relevance of the optimization program choice.
We have planned to test this optimization program by having the robot throw an object but some
programming problems prevented us to present that motion inthis report.

33

Résumé (French summary)

Le but de ce stage était de modifer un programme d’optimisation de mouvement dans lequel le
robot avait seulement un contact avec son environnement, afin d’effectuer une optimisation de
mouvement avec plusieurs contacts. Ce qui nous permettra d’étendre la gamme des mouvements
optimaux possibles.

Nous avons d’abord étudié le fonctionnement de l’optimisation pour un seul contact, pour en-
suite, mettre en évidence les modifications à effectuer pourune optimisation multi-contacts.

La présence de plusiseurs contacts amène l’apparition de boucles fermées dans la modélisation.
De plus les robots de type humanoïde sont hautement redondants ce qui nous donne des boucles fer-
mées redondantes. Il nous a fallu alors déterminé la meilleure répartition des couples possibles dans
ces chaînes. Pour cela nous avons optimisé les forces de contact du robot avec son environnement.
Pour cette optimisation nous avions le choix entre:

• Soit, approximer ces forces de contact par une courbe paramétrée, dont les paramètres vont
être ajoutés aux paramètres initiaux de l’optimisation de mouvement.

• Ou alors, effectuer une optimisation interne qui retournera la valeur optimale des forces de
contact à chaque fois que nous aurons besoin de connaitre lescouples.

Dans ce rapport nous comparons les propriétés de ces deux méthodes et notamment le temps de
calcul qui peut s’étendre de, seulement, plusieurs minutesà quelques jours. Ce temps dépend de la
méthode choisie mais également de la pertinence du choix desprogrammes d’optimisation.

Nous avons prévu de tester ce programme d’optimisation sur un mouvement de lancet d’objet
mais des problèmes de programmation ne nous permettent pas de présenter ce mouvement dans ce
rapport.

34

