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Abstract—This paper introduces effective numerical methods
for the planning and fast replanning of safe motions to ensure
the safety, balance and integrity of humanoid robots over the
whole motion duration. Our safe methods do not depend nor
are connected to any type of modelling or constraints. To plan
safe motions, certain constraints have to be satisfied over a
continuous interval of time. Classical methods revert to time-grid
discretization, which can be risky for the robot. We introduce
a hybrid method for planning safe motions, which combines
a classical unsafe method with a verification step that checks
constraint violation and computes excess using interval analysis.
When the robot meets unexpected situations, it has to replan
a new motion, which is often too time-consuming. Hence, we
introduce a new method for rapidly replanning safe motions,i.e.,
in less than 2s CPU time. It computes off-line feasible subsets
in the vicinity of safe motions and finds on-line a solution in
these subsets without actually computing again the nonlinear
constraints. Our methods are validated using the HOAP-3 robot,
where the motions are run without any balance controller.

Index Terms—Humanoid robots, Discretization, Inequality
constraint, Feasible subset, Interval analysis

I. INTRODUCTION

The planning ofsafemotions that ensure the safety, balance
and integrity of humanoid robots has seldom been investigated,
despite recent achievements in motion planning methods.
Humanoid robots are complex systems in which the geometric
and dynamic 3D models are highly nonlinear, which may have
constituted a severe obstacle to the development of methods
capable of planning such safe motions. In this paper, we
introduce efficient methods for planning and fast replanning
safe motions for humanoid robots. In fact, motion planning
for humanoid robots covers a broad range of issues, such as
the aspects of the digital actors’ locomotion [1], generation
of kicking motions [2], computation of manipulator robots’
trajectory [3] and smoothing of pre-calculated motions [4].
As a result, the availability of a safe motion planning method
would have a significant impact in humanoid robotics as it
would provide the conditions for challenging new applications
for humanoid robots involved as coworkers [5], [6] or serving
as assistive robots in the home. Meanwhile, industry is cur-
rently investing in more complex structures, such as two-arm
robots (Motoman) that share the same environment as human
workers, in order to improve process efficiency and quality in
mass production. The complexity of two-arm robots suggests
that in the next decade, industrial needs for safe motion
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should be equivalent to the need for safe motion in humanoid
robotics today. This complexity limits the reactive capabilities
of computation, as well as the motion constraint validity during
movement. Moreover, most of the time the control loop in
charge of the humanoid robot’s equilibrium compensates the
trajectory motion errors. A safe motion planning framework
with the ability to produce a movement while satisfying the
balance constraint would in theory allow balanced open-loop
walking. In practice, it would improve the robustness of the
humanoid controller. Actually, the stability margin of this
controller could be used exclusively for external disturbances
or unmodeled dynamics. This is of interest to complex robotic
systems because of the need to improve efficiency, accuracy
and safety.

To plan a safe motion, one has to check that the constraints
that characterize a robot’s safety, balance and integrity are
indeed satisfied over the whole motion duration. However,
because of strong nonlinearity in some constraints, the optimal
motions are usually obtained at the price of long computation
times. As a consequence, the sought-after optimal motions
are often generated off-line and then used as joint reference
trajectories. Some planning methods can yield results faster but
they often use simplified or reduced models, e.g. Kajita’s cart-
on-table model [7], Kajita’s resolved momentum method [8]
or Goswami’s angular momentum balance [9]. Then, they
have to check a posteriori using simulation software that
closed-loop control can indeed ensure that the constraintson
joint values or torque limits, feasible inverse kinematics, and
equilibrium are satisfied when implemented on the robot. In
the sequel, we will focus on motion planning approaches that
use complete whole-body models, and consider equality and
inequality constraint satisfaction a priori. To deal with either
equality or inequality constraints, available planners need time-
grid discretization. We showed, in previous works, that the
classical time discretization approach is hazardous sinceit
ensures constraint validity only for the considered time instant,
without any information about constraint validity betweentwo
time-grid instants. Hence, we propose a new method for safe
discretization that relies on a time-interval discretization and
uses interval analysis to compute constraint extrema over the
time intervals, thereby ensuring constraint validity overthe
whole motion duration [10], [11]. In this paper, we introduce
an iterative hybrid method for planning safe motions, which
requires scalable computation time similar to that required by
classical unsafe motion planning methods. It computes feasible
optimal motions using the classical time-grid discretization
approach, then checks a posteriori constraint violation over
whole time duration using the time-interval discretization and
computes the violation magnitude. It then uses the latter
to penalize the constraints. The whole planning/verification



process is then redone until no violation occurs. A proposition
is given which proves that the hybrid method converges to
a conservative and safe solution. Experiments show that our
hybrid approach converges after only a few iterations. In order
to validate our hybrid safe motion planning method, we built
a database of computed safe motions, which was used on
the HOAP-3 robot to track a moving target, while in an
open loop, i.e., without any balance control. Finally, it must
be noted that our method for planning safe motions is not
bound nor connected to a given model or constraint. It is a
generic method, that may be used with reduced models as well,
provided the model used is valid, i.e. derive an appropriate
modelling of the robots and the environment. Simpler, yet valid
models may lead to faster planning.

Since safe motions are computed off-line, they cannot fit
to all the situations the robot will encounter while in on-
line use. Thus, we propose as a second contribution a fast
replanning method which computes a new safe motion from
a previously optimal one in a very short CPU time (less
than 2s). The idea of fast replanning motions is not new.
Nishiwaki, et al, replanned motions using the mixture of pre-
designed patterns [12], Tak, et al, [13] designed a method
that balances dynamical motions, Yamane and Nakamura [14]
combined motions from a database of motions generated using
kinematics only, then used ”dynamics filters” to correct robot
physical consistency, and Kagami et al. [15] relied on a control
loop process to adapt the motion. The above techniques derive
results with no guarantee, and still rely on closed-loop control
to ensure constraint satisfaction a posteriori. Nevertheless, one
may combine our guaranteed discretization approach with the
above replanning techniques: any underlying time-grid dis-
cretization used to deal with a nonlinear inequality constraint
that must be satisfied over a given time or space interval, may
be replaced by our guaranteed discretization.

Our new replanning method is safe. It uses an inner approx-
imation, i.e., a subset of feasible motions computed off-line in
the vicinity of an optimal motion. In a previous work [11], we
showed how to compute this feasible subset as a box. In this
paper, we improve our method and show how to obtain a larger
inner approximation. To overcome unpredicted situations,our
fast replanning process consists of picking up, within the inner
subset, a new motion that fits the new environment. Since
it is no longer necessary to solve the nonlinear inequality
constraints, replanning can then be done very rapidly. In this
paper, we apply our planning and fast replanning methods to
the kicking motion. In the case of soccer robots [16], this isthe
most important motion since it allows the robot to make a goal.
Usually, kicking motion is computed off-line [17], and thus
does not take into account the robot’s current position or the
direction of the goal. Nevertheless, these pre-computed kicking
motions allow the robot to react quickly to the situation, even
if the kicking sometimes leads to an inaccurate ball trajectory.
We show how to make the kicking motion more accurate by
using our off-line safe motion planning and fast replanning
processes. Moreover, in order to demonstrate the effectiveness
of our replanning method we plan and replan a variety of
kicking motions that we evaluate experimentally using the
HOAP-3 robot.

The paper is organized as follows. Section II reviews the
motion planning problem. Section III presents the first contri-
bution of the paper; namely, the adaptive hybrid safe motion
planning method. Section IV introduces the second contribu-
tion of the paper; namely, our method for fast replanning of
safe motions. We illustrate our approach with the replanning
of kicking motions. We conclude the paper by underlining
the advantages and drawbacks of our safe motion planning
framework and emphasize the prospective developments for
our method.

II. M OTION PLANNING

In this section we describe the full-body model used for the
robot under study. We give the optimality criterion and the
equality and inequality constraints that must be satisfied by
the sought-after motion.

A. Modeling of motion constraints

We consider humanoid robots as arborescent chains, with
n degrees of freedom (dof). Since we focus on the lower
part of the HOAP-3 humanoid robot, assuming the upper part
fixed, we plan the trajectories for theNj = 12 legs joints.
We consider the motion safe if it ensures, during the whole
motion duration, that joints positionql, velocity q̇l and torque
Γl remain within acceptable bounds, i.e.

∀l, ∀t ∈ [0, T ] (ql ≤ ql(t) ≤ ql)

∧ (q̇l ≤ q̇l(t) ≤ q̇l) ∧ (Γl ≤ Γl(t) ≤ Γl) (1)

that the robot does not slide, i.e.

∀t ∈ [0, T ] FX(t)
2
+ FY (t)

2 ≤ µ2FZ(t)
2
, (2)

whereµ is the Coulomb friction parameter andF the contact
force, and that the robot keeps balance, i.e. the motion keeps
the ZMP [18] within the base of support, i.e.

∀t ∈ [0, T ] (ZMPs ≤ ZMPs(t) ≤ ZMPs)

∧ (ZMPf ≤ ZMPf (t) ≤ ZMPf ). (3)

Eqs. (1)-(3) are then gathered in the following set of inequality
constraints:

∀i, ∀t ∈ [0, T ] gi(q(t), q̇(t), q̈(t)) ≤ 0 (4)

B. The motion planning problem

The motion planning problem is to find the set of optimal
joint trajectories q̃(t), ˙̃q(t), ¨̃q(t) [to simplify notations, we
assume that̃q(t) also describė̃q(t) and ¨̃q(t).] that solves the
problem:

minimizes J(q̃(t))
subject to ∀i, ∀t ∈ [0, T ] gi(q̃(t)) ≤ 0

and ∀j, ∀τ ∈ {τ0, . . . , τk} hj(q̃(τ)) = 0
(5)

whereJ denotes the cost (or objective) function,gi the set
of inequality constraint functions, andhj the set of equality
constraint functions.



1) Cost function:The choice of the cost functionJ(q(t))
for motion planning must take into account the robot’s features
and the desired application. Some authors minimize motion
duration [19] or jerk [3] for robot manipulators. In [2], the
energy consumption taking into account actuators parameters
(friction, etc.) is considered for humanoid robots. Biologically
inspired cost functions can also be considered; for example,
the minimum torque change [20]. In this paper we considered
as criterion the motion duration in Sections II and III, and the
energy consumption in Section IV.

2) Inequality constraint functions:The physical limits of
the system are defined through the set of the inequality
constraintsgi(q(t)) as shown previously. Hence, the robot’s
integrity and balance are ensured if these inequality constraints
are satisfied over the whole motion duration, i.e.,∀t ∈ [0, T ].

3) Equality constraint functions:The set of the equality
constraint functionshj(q(t)) allows the definition of motion
waypoints. These functions usually correspond to constraints
on some of the system state variables at given time instants
τ ∈ {τ0, . . . , τk}, such as the beginning or the end of a motion.

4) The Semi-Infinite Programming problems and B-splines
parametrization:Problem (5) is an optimal control problem,
also called an Infinite Programming problem since it aims to
find the continuous trajectories that satisfy a set of continuous
inequality functions. Both the trajectories and the inequality
functions can be decomposed into infinite sets of value. To
the best of our knowledge, there are no algorithms able to
deal with an Infinite Programming problem, so we have to
transform it into a Semi-Infinite Programming (SIP) problem
[21]. SIP is an optimization problem with a finite number
of variables to optimize and a set of continuous constraint
functions that is equivalent to an infinite number of discrete
constraints to satisfy [22]. To do so, one usually uses a joint
trajectory parametrization [23]:

q(t) = f(X, t) (6)

where X is a vector of parameters. We choose to com-
pute joint trajectories with B-spline functions [24]. Thus,
we define a motion via the parameter vectorX =
[T, p1,1, p1,2, . . . , pNj,Ns

] whereNs is the number of basis-
functions,T is motion duration andpk,j the coefficients of the
weighted sum of the B-spline functions. The joint trajectory
qk(t) is computed as follows:

∀k ∈ {1, . . . , Nj} qk(t) =

Ns
∑

j=1

pk,j ×Bj(t) (7)

Joint velocity and acceleration are obtained by differentiating
(7). In this paper, we use nine uniform clamped B-splines basis
functions. We gather the three first and the three last common
basis-functions to obtain initial and final joint velocity and
acceleration equal to zero and get the basis functions [24],
hence we considerNs = 5 optimization B-splines parameters
per joint trajectory. Our motion planning problem boils down
to finding a parameter vector̃X that is the solution of the

following constrained optimization problem:

minimize J(X)
subject to ∀i, ∀t ∈ [0, T ] gi(X, t) ≤ 0

and ∀j, ∀τ ∈ {τ0, . . . , τk} hj(X, τ) = 0
(8)

Note that the inequality constraint must be satisfied over the
whole time duration.

C. The classical method for solving SIP

Most classical constrained optimization algorithms, suchas
IPOPT [25] or FSQP [26] use a finite number of discrete
constraints, hence require the discretization of continuous
functions [22], [27]. Discretization usually consists of picking
up the functions values over several time points taken on a
grid. This leads to the replacement of the inequality constraints
in Equation (8) by:

∀i, ∀tk ∈ T gi(X, tk) ≤ 0
whereT = {t1, ..., tM−1, tM}

(9)

Consequently, the continuous set of inequality functions (8)
∀i, ∀t ∈ [0, T ] gi(X, t) becomes a discrete one:∀i, ∀tk ∈
T gi(X, tk) where the constraints are only considered for
discrete values taken on the time-gridT. Some methods run
several optimization processes and modify the gridT in order
to get better results [22]. In fact, the optimal value depends
on the number of time points considered [28].

Fig. 1. Representation of a constraint function (the ZMP in the sagittal plane),
obtained with a motion planning method using time-grid discretization.

We used this classical method of discretization with a sagit-
tal 2D model of the HOAP-3 robot, and found out that it en-
sures constraint satisfaction only for the time instants taken on
the time-grid (see Figure 1) [10], as was already mentioned in
[29]. Furthermore, no information is given regarding constraint
satisfaction between two points on the time-grid. Therefore,
the constraints can be violated during the motion. To be
able to compare our safe planning method and this classical
way of discretization, we run the motion planning process
several times using the classical discretization approachfor
several time-grid size. The outcomes are gathered on Table I.
It highlights the fact that some time-grid sizes may produce
hazardous motions. To find an appropriate time-grid size, i.e.
that ensures the robot’s safety, one usually performs several
trials while increasing grid size, until one finds a satisfactory



motion. Summing up the trial running times, a satisfactory
motion is obtained in 22 CPU minutes (the checking process
time excluded).

Remark 1: In the sequel, all CPU times were obtained on
the following hardware and software. CPU : Intel Core 2 Duo
E4400 2GHZ, Bus Speed: 800MHz, L2 Cache: 2MB, Mem-
ory: 2GB at 667MHz, OS: Linux Ubuntu 8.04. Constrained
optimization problems were solved using IPOPT software
package. Interval arithmetics related software was written in
C++ and compiled using gcc-4.1

TABLE I
CRITERION (MOTION DURATION), COMPUTATION TIME, AND NUMBER OF

VIOLATED CONSTRAINTS OBTAINED FOR DIFFERENT TIME-GRID SIZES.

grid size criterion(s) CPU time violation

7 0.3691 49.9 s 17
13 0.3896 1mn 24s 14
31 0.3914 1mn 05s 14
61 0.3925 2mn 34s 6
121 0.3943 4mn 47s 2
301 0.4010 13mn 21 s 0
601 0.4169 24mn 9s 0

III. SAFE MOTION PLANNING

Before introducing our method for planning safe motions,
we will introduce interval analysis and a guaranteed discretiza-
tion approach, the two main ingredients of our technique.

A. Interval Analysis

Interval analysis was initially developed to account for the
quantification errors introduced by the floating point repre-
sentation of real numbers with computers, and it was then
extended to validated numerics [30], [31]. A real interval
[a] = [a; ā] is a connected and closed subset ofR, with
a = Inf([a]) and ā = Sup([a]). The set of all real intervals of
R is denoted byIR. Real arithmetic operations are extended
to intervals. Consider an operator◦ ∈ {+,−, ∗,÷} and [a]
and [b] two intervals. Then:[a] ◦ [b] = [infu∈[a],v∈[b] u ◦
v, supu∈[a],v∈[b] u ◦ v].

Consider a functionm : Rn1 7−→ R
n2 ; the range of this

function over an interval vector [a] is given by:m([a]) =
{m(u) | u ∈ [a]}. The interval function[m] : IRn1 7−→ IR

n2

is an inclusion function form if ∀[a] ∈ IR
n, m([a]) ⊆

[m]([a]). An inclusion function ofm can be obtained by re-
placing each occurrence of a real variable by the corresponding
interval and each standard function by its interval counterpart.
The resulting function is called the natural inclusion function.
The performances of the inclusion function depend on the
formal expression ofm [30].

SIP problems have already been solved with constraint
satisfaction and global optimization methods based on interval
analysis ([31], and the references therein). These methods
usually rely on branch-and-prune methods, whose complexity
grows exponentially w.r.t. the dimension of the parameter
vector, hence would require too long a computation time when
used for motion planning with humanoid robots.

B. Guaranteed Discretization

The guaranteed discretization process ensures the validity of
the inequality constraints over the whole motion duration [10],
[11] by computing the minimum and the maximum values
for the set of functionsgi(X, t) at a given intervalt ∈ [t].
An upper bound for the maximum value maxt∈[t](gi(X, t))
is given by Sup([gi](X, [t])) and a lower bound for the
minimum value mint∈[t](gi(X, t)) is given by Inf([gi](X, [t])).
Therefore, the upper bounds ofgi(X, t): max gi are easily
obtained by computing the upper bound of the inclusion
function [gi](X, [t]) for a time interval[t].

Using this guaranteed discretization approach, the inequality
constraint functions in (8) are replaced by:

∀i, ∀[t] ∈ IT Sup([g]i(X, [t])) ≤ 0 (10)

With IT = {[t]1, [t]2], ..., [t]k−1, [t]k} and [t]n = [tn−1, tn].
In practice, the bounds thus derived may be too coarse

because of over-approximations in interval computation (the
wrapping and dependence effects). Still, there are several
techniques that can be used to obtain tighter enclosures by
using, for instance, Taylor series expansion or some global
optimization techniques [31]. In the sequel, we use a bisection
process which decomposes an interval into2b subintervals to
compute the minimal and maximal values of the constraint
functions.

C. A Direct Method for Safe Motion Planning

The guaranteed discretization approach is used to plan a
motion for the HOAP-3 robot using a sagittal 2D model [32].
The enclosures, which are a conservative computation of the
extrema, are the values returned to the optimization algorithm.
By doing so, the algorithm will be able to produce an optimal
solution that satisfies all the constraints over whole motion
duration.

We made several trials while increasing grid size. Table II
shows that the criterion value reached with our safe method
is lower, hence better that the criterion value reached by the
classical method (Table I). It shows however that the CPU
time required to obtain the result is clearly prohibitive. We will
introduce a hybrid method for planning safe motions within
a CPU time similar to the ones required by classical unsafe
methods.

TABLE II
CRITERION, COMPUTATION TIME, AND NUMBER OF VIOLATED

CONSTRAINTS AS OBTAINED FOR DIFFERENT CHOICES FOR THE
TIME-INTERVAL VECTOR k AND THE BISECTION ORDERb.

k b criterion (s) CPU time

6 15 0.3970 44h 03mn
12 15 0.3933 28h 36mn
6 16 0.3950 32h 19mn

D. A Hybrid Method for Safe Motion Planning

The main idea to reduce CPU time is to use guaranteed
discretization as seldom as possible. Therefore, our idea is to
develop an iterative process which uses classical discretization



Algorithm 1 Hybrid Safe Motion Planning
1: X := Xinit, r := 1, ∀i, k νi,k,1 := 0,
2: repeat
3: Use time-grid discretization and solve SIP with inequal-

ity constraint∀i, ∀tk ∈ T gi(X, tk) ≤ −νi,k,r
4: Check constraint satisfaction for the computed feasible

motion: compute violation excessµi,k,r

5: if (∃i, k, r such asµi,k,r 6= 0) then
6: νi,k,r+1 := νi,k,r + µi,k,r

7: r := r + 1
8: end if
9: until µi,k,r = 0

10: return X which characterizes a safe motion.

processes to solve the SIP problem, i.e. an unsafe method, and
then uses guaranteed discretization to check that the inequality
constraints are satisfied.

For an iterationr, we modify the inequality constraints of
Eq. (9) by:

∀i, ∀tk ∈ T gi(X, tk) ≤ −νi,k,r (11)

and solve the SIP problem with a classical discretization.
Using the computed parameter vectorX, we compute the
constraint violation magnitudeµi,k,r for each constraint, using
guaranteed discretization.

µi,k,r = max(0,Sup([g]i(X, [tk−1, tk])),

Sup([g]i(X, [tk, tk+1]))) (12)

If we detect a constraint violation (∃i, k, r such asµi,k,r 6=
0), we penalize the constraint function over the corresponding
time points, as follows:

νi,k,r+1 = νi,k,r + µi,k,r (13)

and redo the optimization process again until no violation
occurs. This algorithm is shown on Algorithm 1 and is
summarized on Figures 2 and 3.

Figures 2 and 3 show the time history of the ZMP in
the sagittal plane for the first two iterations. On Figure 2,
a constraint violation is detected and the excess magnitudeis
computed; on Figure 3, a penalization is introduced, which
further lowers the constraint limit. Eventually, no violation
occurs and the constraint function remains within feasible
values. For the ZMP constraint in the sagittal plane, only
two iterations were needed, but other constraints needed more
than two iterations. Table III shows the CPU time of the
successive optimization processes. The total CPU time is
(41.4 + 33.8 + 7.6 + 8.4 + 4 × 380 = 1611.2s), nearly 27
minutes.

TABLE III
CPUTIME OF THE HYBRID METHOD FOR MOTION PLANNING

(TIME OF THE CHECKING PROCESS IS380S.)

r CPU time (s) maximal violation magnitude total CPU time (s)
1 41.4s 5.4 % 421.4
2 33.8s 0.25 % 835.2
3 7.6s 1e−5 % 1222.8
4 8.4s no violation 1611.2

Fig. 2. Hybrid method for safe motion planning: first iteration r = 1

Fig. 3. Hybrid method for safe motion planning: second iteration r = 2

E. Convergence of the hybrid method

We will now analyze the convergence properties of the
hybrid method and show that it converges to a conservative
solution. Let us consider the time gridT = {t1, ..., tM−1, tM}.
DenoteX⋆ ∈ R

n the actual solution vector of (8), and let us
define, for alli andk the scalarν⋆i,k as follows

if (∃ ť ∈ [tk−1, tk+1], such thatgi(X⋆, ť) = 0)
then ν⋆i,k = −gi(X⋆, tk),

else ν⋆i,k = 0.
(14)

In fact, ν⋆i,k is non null only when the inequality constraint
gi(., t) is active on[tk−1, tk+1]. Then, it is easy to prove that
X

⋆ is also a solution of






minimize J(X)
subject to ∀i, ∀k ∈ T gi(X, tk) ≤ −ν⋆i,k

and ∀j, ∀τ ∈ {τ0, . . . , τk} hj(X, τ) = 0.
(15)

(15) is a constrained optimization problem where the inequal-
ity constraints involveν⋆i,k.

TABLE IV
COMPARISON OF THECPUTIMES FOR THE METHODS PRESENTED.

methods classical unsafe direct safe hybrid safe
CPU time 22mn 28h 36mn 27mn



DenoteX̃r the solution vector of






minimize J(X)
subject to ∀i, ∀k ∈ T gi(X, tk) ≤ −νi,k,r

and ∀j, ∀τ ∈ {τ0, . . . , τk} hj(X, τ) = 0
(16)

where the inequality constraints now involveνi,k,r computed
via (13).

Proposition 1 (Convergence to a conservative solution):It
existsr̃ such that

• ∀r ≥ r̃, ∀i, ∀k µi,k,r = 0, i.e. the time grid discretiza-
tion yields a safe motion,

• ∀i, ∀k νi,k,r̃ =
∑r=r̃

r=0 µi,k,r ≥ ν⋆i,k.
• X̃r̃ is a conservative solution of (8), i.e.̃Xr̃ is a feasible

solution of (8) andF (X̃r̃) ≥ F (X⋆).

Proof: From (13),∀r νi,k,r ≥ νi,k,r−1. Hence, it exists
r1 such thatνi,k,r1 ≥ ν⋆i,k. Consequently, the feasible solution
vector of (16) forr = r1 is also a feasible solution vector of
(15). Then∀i, ∀k, ∀r ≥ r̃ µi,k,r = 0.

F. Computation time

Table IV shows the CPU times required by the classical
unsafe method, the direct safe method and the hybrid safe
method for motion planning. The classical method uses a time-
grid discretization and produces a result in 22 minutes, but
can provoke constraint violations that may be hazardous for
robot integrity and balance. The direct safe motion planning
method uses a guaranteed discretization of time, but requires
prohibitive CPU time. Our hybrid method produces safe mo-
tions while requiring only 27 minutes. It ensures the robot’s
safety at the price of a CPU time only 20% longer than an
unsafe method, which we consider acceptable.

G. Experimental validation

(a) 5cm, 0o (b) 5cm, 30o (c) 0cm, 30o (d) 0cm, 0o

Fig. 4. Set of the four posture when the robot leans on its leftfoot, define
by the parameters (L: feet distance,α: step direction).

To validate our hybrid motion planning method, we create
a database of motions, to allow the robot to track a moving
target. First, we define a posture using three parameters (l : feet
distance in the frontal plan,L : step size in the sagittal plan,
α : step direction). We choose four postures, withl = 2cm
as presented in Figure 4. We define a step as a motion which
allows switching from one posture to another. We establish a
simple heuristic algorithm (cf. Figure 5) to choose the nextstep
to track the position of the target. This algorithm computes
the directionθ of the target and chooses the best step to
keep the target in front of the robot. Figure 6 shows the
results of the experiment with the HOAP-3 robot. For a better

Fig. 5. Heuristic to choose the next step.

Fig. 6. Experimental validation of the motion computed withthe hybrid
motion planning method.

understanding, the full video is available at ieeexplore.ieee.org.
It emphasizes that the hybrid motion planning method ensures
the validity of the constraint, since the robot tracks the target
and keeps its balance without any balance controller.

Remark 2:Unfortunately, we considered only 24 motions
with initial and final static postures. By considering dynamic
motion transition we might get smoother navigations, as done
in [33].

H. Conclusion

In this section, we introduce an iterative hybrid method
for planning safe motions, which requires CPU time of the
same order of magnitude as for classical unsafe methods. For
the HOAP-3 robot, we find that the required CPU time is
only 20% longer, which is very acceptable. Then, by using a
tracking experiment without any balance controller, we prove
that our hybrid motion planning method is able to generate
safe motions.

IV. FAST REPLANNING OF SAFE MOTIONS

A. Replanning a kicking motion

In the above sections, we showed how to plan safe motions.
We will now address fast replanning of such safe motions. Let
us use the hybrid method introduced in the previous section
to plan a safe kicking motion. The objective is to kick a
ball located atx = 1cm. The impact point height is taken
at h = 3cm, as shown in Figure 7, and we assume that
the impact occurs at mid-time. Hence, the planned motion is
merely characterized by the position (x, h) of the foot at the
mid-duration time instant. The planned safe motion is depicted
on Figure 8(a): The impact occurs at the desired position
(x = 1cm, h = 3cm). Now, what happens if the ball is not



at the expected position or has a wrong size ? Figure 8(b)
shows the kicking motion obtained when the motion planned
for x = 1cm is run while the ball is at positionx = 3cm. In
fact, the foot hits the ball at an impact point which is higher
than expected. As a consequence, the energy transmitted to
the ball may be insufficient to reach the desired goal. Figure
9 shows the outcome when the kicking motion planned for
(x = 1cm,h = 3cm) is used with a ball smaller than expected,
hence would have required a lower impact point, and which
is also located at a bad position, i.e.x = 3cm instead of
x = 1cm. Here the robot’s foot goes over the ball and the
robot falls. For a better understanding, the full video is also
available at ieeexplore.ieee.org.

To improve and adapt the kicking motion, one solution may
be to solve the new constrained optimization problem to gen-
erate a new optimal motion with the new equality constraint
corresponding to the actual ball location, i.e.x = 3cm, or
size. However, such an approach is often time-consuming.
One can use a control loop process to modify the motion
[12], [13], [14], [15], but those methods are based on simple
model (such as cart-table) and focus mainly on the balance of
the robot without considering all the constraints, such as the
joint position or torque limits. Such approaches are of course
unsafe, hence risky for robot’s integrity.

We will now introduce a method which modifies the previ-
ous optimal kicking motion in a safe way, i.e., while ensuring
constraint satisfaction, but at the price of only a very brief CPU
time, i.e., less than 2 seconds. Our idea consists of replacing
the set of inequality constraints∀t ∈ [0, T ], g(X, t) ≤ 0,
which is inherent to a given robot, by a set of bounds on the
parameter vector, i.e., byX ∈ [X], where [X] is an inner
approximation, i.e., a subset, of the feasible set of parameters.
Here we consider only inner approximations that are given as
axis-aligned boxes. In our approach, inequality constraints that
can be nonlinear and time-consuming to evaluate are merely
replaced by bounds on the parameter vector. By doing so,
on-line adaptation, i.e., on-line replanning will consistof an
optimization process with bounds only on the parameters, new
equality constraintsh′

k and possibly a cost functionJ ′:

minimizes J ′(X̂)

subject to X̂ ∈ [X]

and ∀k h′

k(X̂) = 0

(17)

where h′

k(X̂) is the new set of equality constraints that
characterizes the actual position of the ball, i.e.x = 3cm,
or the actual impact point. It now remains to compute the
feasible subset[X].

Fig. 7. Representation of the parameter (x, h) of a kicking motion.

(a) Ball at expected position (b) Ball at unexpected position

Fig. 8. A kicking motion planned for a ball at positionx = 1cm, is used
with a ball at expected and unexpected positions.

Fig. 9. A kicking motion planned for a ball at positionx = 1cm and impact
point h = 3cm, is used with a smaller ball that would have required a lower
impact point, and which is at an unexpected position. The robot falls.

B. Computation of the Feasible Subset

Let us denoteX̃ the parameter vector characterizing the
optimal safe motion obtained using our hybrid method. To
make the robot able to adapt its motion to as many situations
as possible, we have to compute an inner approximation[X] of
the feasible set, as large as possible, that contains the optimal
vector X̃ and satisfies all the inequality constraint functions.
Recent studies addressed the computation of feasible sets using
interval analysis for the design of parallel or serial robots (e.g.,
[34]). In fact, we do not need to compute the whole feasible
set, but only an inner approximation of it. We will look for a
subset[X] that will be contained in the feasible set. To obtain
a box [X] as large as possible, we follow two steps: in the
first step, we compute a feasible subset[X] that can be very
small, and in the second step, we expand the feasible subset
[X] to obtain a larger one.

1) First step: Computation of a feasible subset:
a) Principle: We start by computing the interval vector

[W] as a weighted interval vector that will allow us to ignore
or give emphasis to some components of the actual feasible
set. In this paper, we propose to compute[W] by using the
distance between the optimal vectorX̃ and the first constraint
violation along each direction, as depicted on Figure 10.
Hence, we can write a first guess for the feasible subset as:

[X] = X̃+ [W] (18)

Note that0 ∈ [W]. Then, we prune the inconsistent parts of
[X] by solving the following constrained optimization problem
for scalarδ

maximize δ ∈ R

such that ∀j, ∀X ∈ [X], ∀t ∈ [0, T ] gj(X, t) ≤ 0

where [X] = X̃+ δ × [W]
and 0 ≤ δ ≤ 1

(19)



b) Algorithm: The principle of the algorithm is to start
from δ = δ0 = 1, and then to reduce it until the box[X] =
X̃ + δfinal × [W] no longer contains inconsistent vectors.
Figure 10 shows the principle of our algorithm for computing
the feasible subset[X]. Using a branching algorithm with
consistency tests as implemented in the ALIAS toolbox [35],
we solve the following problem for box[z]:

find [z] ⊆ [X]

where [X] = X̃+ δk[W]
such as∃j, ∃t ∈ [t] Sup[g]j([z], t) > 0

(20)

wherek is initially taken ask = 0. If the algorithm finds a
solution, i.e., a box[z] 6= ∅, it stops andδk is updated. New
δk+1 is chosen such that:

[z] ∩ (X̃+ δk+1[W]) = ∅ (21)

Problem (20) is solved again with newδk+1 until it admits
no solution. When the latter occurs, an inner approximation
for the feasible set, i.e., a feasible subset, has been found.
Eventually, the feasible subset is given by:

[X] = X̃+ δfinal[W] (22)

2) Second step: Expansion of the feasible subset:
a) Principle: On Figure 11, we can see that the subset

[X] is not as large as possible, and it could be extended on
X+

1 or X−

2 directions. Thus, we focus on an expansion step
to obtain an extended feasible subset[X].

b) Formulation: Let us denote bym, the index ofX
vector components. Let us introduceE◦

m, ◦ ∈ {−1, 1}, a
vector of same dimension asX which contains null intervals
except for themth component, which contains interval[−1, 0]
for ◦ ≡ − (negative direction) or[0, 1] for ◦ ≡ + (positive
direction). We can expand subset[X] in ◦ direction on the
mth component, by solving the following problem:

maximize ρm ∈ R
+

with [X]′ = [X] + ρm ×E
◦

m

and∀i, ∀X ∈ [X], ∀t ∈ [0, T ] gi(X, t) < 0
(23)

When ρm is found, the expanded inner subset is taken as
[X]← [X]′. The whole expansion process implies expanding
all the parameters and directions. However, we have to choose
the order of parameter expansion as it will impact the final
result. Indeed, Figure 11 shows that if we extend[X] on X+

1

direction, we will reduce the magnitude of following possible
expansion toX−

2 direction (and vice-versa). Therefore we
have to rank the parameters for expansion regarding:

• the sensitivity of the foot’s location with respect to
parameters. We have to emphasize the parameters that
will bring the greater modification to the foot’s position.

• the sensitivity of the constraint functions with respect to
parameters. To get a feasible subset as large as possible,
we have to emphasize the parameters for which constraint
functions are less sensitive.

To sum up, we have to rank first the parameters that maximize
the variation of the foot’s position without leading to constraint
violation.

Fig. 10. Example of a feasible set and of its inner approximation : the
feasible sub-set[X]

Fig. 11. Example of the expansion process. The final subset[X] rely on the
order of the expansion.

C. Application to kicking motion

We apply now our fast safe replanning method to a kicking
motion. Here, we detail the replanning results for the case
(x = 1cm, h = 3cm).

1) Choice of the parameters to adapt:Obviously, it is
not necessary to adapt all motion parameters. Since, we are
interested in collision location along the x-axis, we adaptonly
the joint trajectories that impact motion in the sagittal plane:
namely, the knees, hips pitch, and ankles pitch. Collision
occurs at motion half-duration, thus we will only change the
third B-spline parameters. Last, to proceed with the expansion,
we rank the parameters according to the sensitivity criteria
stated in the previous section. We choose to expand the
feasible sub-set starting from the parameter of the flying leg,
ankle, knee and hip, and then the supporting leg hip, knee and
finally ankle.



2) Feasible Subset:Figure 12 depicts the results of our
computation. We can see that the expansion process is effective
and can indeed enlarge the feasible subset. The width of the
feasible sub-set depends on the B-spline parameter under con-
sideration, but it is interesting to see that the parameterscan be
changed within an interval of 7 to 14 degrees without making
the robot fall, since our method ensures that no constraint is
violated. Figure 13 shows the set of impact positions(x, h)
that can be attained by the feasible set of motion parameters
taken in [X]. Let us assume we have initially planned a safe
motion for h = 3cm andx = 1cm. Then, if we target an
impact ath = 3cm, our replanning method can yield adapted
kicking motions for balls located atx ∈ [−1; 5]cm.

Fig. 12. Results of the computation of the feasible sub-set.The green values
represent the feasible subset components prior to the expansion process. The
red values represent the components after the expansion process.

Fig. 13. Representation of the feasible set of impact position (x, h) for
motions in the feasible subset[X]. The green values are before the expansion
process, the red values are after the expansion process.

D. Replanned motion

We choose to replan the optimal motion to make the
robot kick a ball ath = 3cm high and located at position
x = 3cm. Thus, we proceed with the optimization of the
problem presented in Equation(17) but with the following
equality constraints:

find X̂ ∈ [X], such that
h(X, T/2) = 3cm andx(X, T/2) = 3cm

(24)

Our implementation of the optimization algorithm took 1.5s
of CPU time to find solutionX̂. The replanned motion is
depicted on Figure 14, with the impact at the desired position

(x = 3cm, h = 3cm). Figures 15 depicts the time-history of
the range of the feasible left foot velocity, the time-history of
the planned and of the replanned left foot velocities, during
the kicking motion. In fact, when replanning foot motion by
modifying the third Bsplines parameters only, the velocities of
the robot’s joints remain unchanged at mid-duration, and joint
values are only slightly modified. Consequently, the flying foot
velocity remains almost the same for any replanned motion.
Our fast replanning process forx = 3cm yields a kicking
motion for the ball that is as good as the one originally planned
for x = 1cm. In contrast, when the latter is used when the ball
is at x = 3cm, ball motion has poorer performance.

Fig. 14. Replanned kicking motion. See also full video at ieeexplore.ieee.org.

Fig. 15. Representation of the feasible time history of the velocity of the
foot.

This emphasizes the effectiveness of our method, which
is capable of producing new motions adapted to unpredicted
environment, in a very brief CPU time.

E. Experimental evaluation

To demonstrate the effectiveness of our fast replanning
method we investigate the replanning issue of a variety of
kicking motions. Starting from the optimal motions planned
for three different cases (distance to toex = 1cm ; kicking
impact point heighth =1, 2 and 3 cm), we compute from these
optimal solutions, the feasible sets of new impact positions that
can be re-planned using the fast approach. The feasible subset
in the vicinity of the optimal motion computed for the impact
point (x = 1cm, h = 3cm) is already given in Figure 13, and
the ones around the impact points (x = 1cm, h = 1cm) and
(x = 1cm, h = 2cm) are gathered in Figure 16. Then, using
these sets, we study the possibility to replan kicking motions
using our fast method for twenty five new ball locations and
impact heights, combiningx =1, 2, 3, 4, 5 cm andh =1, 2,



3, 4, 5 cm, from the three originally planned motions. It must
be noted also that this experimental evaluation of the method
explores a large portion of the kicking motion’s workspace for
the HOAP-3 robot, i.e. the geometrical space reachable by the
robot’s flying foot. Fourteen out of the twenty five new impact
points are included in at least one feasible subset, hence can
be successfully replanned using our fast approach. Figure 17
shows the twenty five impact points (ball location× impact
height), and the three feasible subsets used: an impact point is
feasible if it is contained in at least one feasible subset. The
maximum CPU time required for each fast replanning was
less than 2 s. Figure 18 shows the replanned kicking motion
for (x = 2cm,h = 2cm) as obtained from the optimal motion
computed for (x = 1cm,h = 3cm): the robot now hits the ball,
that is smaller than expected, in an appropriate manner while
keeping balance. For a better understanding, the full videois
also available at ieeexplore.ieee.org. Figure 19 shows thefast
replanned motion for a kicking motion at (x = 5cm,h = 3cm)
as obtained from an optimal kicking motion computed for
(x = 1cm, h = 1cm). It is clear that our approach allows
a large variation of the robot’s foot motion while ensuring
robot’s balance and integrity. Here again, all experimentsare
done without any closed-loop balance controller. In summary,
these experimental results are strong evidence that our method
can be easily extended and applied to the fast replanning of
arbitrary motions such as walking.
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Fig. 16. Representation of the feasible sets as computed around the optimal
motions (x = 1cm, h = 1cm) (left) and (x = 1cm, h = 2cm) (right).

Fig. 17. Representation of the twenty five impact points (black dots) and
the three feasible sets as computed around the optimal motions (x = 1cm,
h = 1cm) (red color), (x = 1cm, h = 2cm) (blue color), and (x = 1cm,
h = 3cm) (green color).

F. Conclusion

In the vicinity of each safe motion computed using our
hybrid method, our fast replanning method computes a subset

Fig. 18. Replanned kicking motion for (x = 2cm, h = 2cm) as obtained
from the optimal motion computed for (x = 1cm, h = 3cm). See Fig. 9.

Fig. 19. Synchronized still images of the optimal motion for(x = 1cm,
h = 1cm) (above) and the replanned one for (x = 5cm, h = 3cm) (below)
as obtained from the former. Fast replanning process allowslarge variations
of foot location.

of feasible motions, i.e., motions that ensure the robot’s
safety and integrity. Thus, replanning boils down to solving
an optimization problem with only bounds on parameters,
and a set of new equality constraints. Nonlinear inequality
constraints are no longer used, therefore replanning can be
done very rapidly. We applied our approach to a variety of
kicking motions and we were able to replan appropriate and
safe kicking motions when the ball changed size and location
in less than 2s CPU time. This is a very promising result
since one can now consider performing replanning on-line and
extend our replanning approach to arbitrary motions such as
walking.

V. CONCLUSION AND FUTURE WORK

Planning motion for robots while ensuring their balance,
integrity and safety requires that some constraints be satisfied
for the whole motion duration, i.e., over a continuous interval
of time. Classical motion planning approaches usually revert
to time-grid discretization. We emphasize the fact that such
approaches can be risky for robots since they cannot detect
any constraint violation that may occur between two time-
grid points. To address this shortcoming, we have introduced
a hybrid method for planning safe motions. Our method is
an iterative algorithm that combines a classical unsafe method
with a verification step that checks constraint violation and
computes excess via interval analysis. This method requires
CPU times fairly similar to those of classical methods. To
validate our approach, we built a database of such safe mo-
tions, then evaluated the database on a ball tracking experiment
where the HOAP-3 robot successfully followed a moving ball
without using any balance controller.

Safe motions are computed off-line and they are usually
fitted only to a finite set of situations. If a robot meets an
unexpected situation, a new motion must be replanned. The
latter procedure used with thorough models is usually too
time-consuming to be used on-line, even with unsafe methods.
Therefore, we introduced a new method for replanning safe
motions rapidly, i.e., in less than 2s CPU time.



We used our fast replanning method to replan a variety
of safe kicking motions for a HOAP-3 robot. Starting from
three safe kicking motions already available in the database,
we were able to successfully replan new safe ones to kick balls
of several sizes that were at a fairly large distance from the
originally planned locations. Experimental evaluations gave
strong evidence that our replanning approach can be extended
to arbitrary movements such as walking.

The planning and fast replanning methods proposed in this
paper are available as a C++ toolbox (on website safemotions.
sourceforge.net). They were validated while planning motions
for the lower body part of an HOAP-3 robot, using a 12-dof
model.

If an impact model is available, our safe planning methods
may easily be extended and used for planning safe motions
with impact. It suffices to consider three phases: the two
continuous motions before and after the impact, and the
discrete event at the impact instant where the start of the
motion after the impact may be obtained from an impact model
and the end of the motion prior to the impact, as suggested
in [36]. Furthermore, our safe methods can also be used with
simpler, yet valid, models; they may yield results faster and
eventually be used on-line.

In the near future, we will use and evaluate these methods
for planning full-body motions, using models with a larger
number of dof. Future work will address the presence of
uncertainty in the considered models. One way to address
such an issue is to implement an n-dimensional interval
discretization within our hybrid method. We will have to
use the guaranteed discretization approach on any uncertain
variable, in addition to motion duration. Guaranteed Taylor
series may also be investigated to reduce computation time.
Our replanning method computes feasible inner subsets as
axis-aligned boxes. We plan to develop an automatic way to
rank the parameters during the expansion stage. For instance,
sensitivity functions of the balance constraint function may be
used, and one may expand first those parameters which have
less impact on balance constraint. We will also investigatethe
possibility of using an alternative representation of sets, using
ellipsoids or zonotopes for instance, to increase the size of the
computed subsets, hence improving adaptation capabilities.
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