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Abstract— Robotic coverage problem is addressed in several
fields: painting, stripping, grist-blasting, etc. In multi-robot
systems, the collaboration between robots reduces the cycle
time and increases the coverage task accuracy. However, the
robot base placement must be deeply studied to attend those
goals. In this article, we propose a new approach in order to
assign tasks within a multiple robots system. In addition, we
develop an optimization strategy to find the optimal number
of robots with their optimal poses required to cover the entire
surface. To assess our method, our algorithm was tested on
regular surfaces such as cylinder and hemisphere, and on a
complex surface represented in a car shell.

I. INTRODUCTION

The surface coverage using robots is a common problem
divided into two cases according to the robot state during
the task: the robot could be either static or mobile. For the
static case, the robot is positioned at a fixed point to cover a
surface, e.g. to achieve painting, stripping, or sand-blasting
tasks [1], [2], [3]. In that case, the surface is supposed
totally reachable from a fixed point and the coverage problem
solution returns the optimal trajectories of the end-effector
needed to sweep the entire surface. In the mobile robot case,
the robot can move to achieve its task like in demining,
inspection and agricultural fields coverage. The optimal paths
of the mobile robots needed to cover an environment are
computed [4], [5], [6], [7].

A third type of coverage problems can be defined when
the robot is fixed and the surface is larger than its workspace.
In that case, the surface can not be covered from one given
position and the coverage problem consists to reposition the
robot(s) to cover a surface under the assumption that the
coverage task can not be done continuously and needs to
be stopped when repositioning the robot. For instance, air-
plane stripping and building facades refurbishing are some
coverage tasks that require repositioning the robots. Another
example of such tasks is the car stripping using KUKA Light
Weight Robots (LWRs) shown in Figure 1.

This article treats the third problem by using an optimal
robot base placements strategy. Optimal robot positioning
can decrease the task cycle time and increase its efficiency
as well as its accuracy. To reach those goals, the robot
base placement should be studied in combination with the
coverage problem.

The placement of single robot has been tackled in several
domains. Genetic algorithms are used to optimize robot
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Fig. 1. Car stripping using a KUKA robot

base placements in manufacturing and underwater environ-
ments [8], [9]. In milling domains, the robot pose maximiz-
ing its manipulability is chosen using genetic algorithm [10].
In [11] the inverse reachability representation is used to
compute robot base poses. The above base placements op-
timization approaches were extended to deal with multiple
industrial robots for the coverage tasks. Hassan, Liu et al.
proposed a new strategy to distribute the work between
robots for coverage tasks assuming that a reasonable number
of robots is intuitively chosen based on the size of the
object [12], [13]. The strategy consists in finding an optimal
base placement and the visiting sequence of the base place-
ments by each robot. A combination of Simulated Annealing
and Genetic algorithm optimization is used to find the
optimal robot base placement in [13]. Despite the relevance
of this strategy, it suffers from several disadvantages:

1) The number of robots is harder to guess when the
surface gets more complex.

2) The end-effector trajectories used as inputs for base
placement optimization are not optimal. They are gen-
erated without considering the robot poses.

3) After the base placement optimization, area partition-
ing and allocation of the surface between different
robot poses is required to improve the end-effector
trajectories [14].

4) The total surface coverage is not guaranteed.
To deal with those issues, we propose a new approach

for a complete coverage using a multiple robots system. An
important feature of our approach is that it does not only
find the optimal pose of robots bases but it also provides
the optimal number of robots Ñ needed to cover the whole
surface. Contrary to the state of the art, the knowledge of
the total number of robots is not required in our approach.

The optimization of the number of robots with their poses
is an extension of the Art Gallery Problem that aims to
find the smallest number of guards required to guard the
art gallery. Chvátal was the first to tackle this problem in
1973 [15], [16]. Over the years, Art Gallery Problem has
been studied in robotics, optimization, vision computational



graphics, etc [17]. For instance, it was used to optimally
position TV cameras in a closed room, to distribute the
lighting sources in a small room, or to find the positions
of different radar stations in a mountain [18]. It is also used
for military goals especially during infiltrating an area and
clearing it of threats. Recently, optimal cameras and sensors
placement have been deeply studied. A survey on different
optimization algorithms used for cameras placement can be
found in [19]. The survey differentiates between the FIX and
MIN cameras placement problems. FIX is the optimization
of a defined number of cameras placement to maximize the
coverage of a surface. MIN is the computation of the optimal
number of cameras in order to totally cover the surface. In
this review, Greedy algorithm was suggested for solving the
MIN problem. Moreover, FIX algorithm was applied on a
set of different cameras for finding the minimum number
required. Those algorithms can be adapted to solve the cov-
erage problem with a set of robots. However, their relevance
on complex surfaces is limited by the complexity of the shape
needed to be covered. In this paper, we propose an extended
optimization algorithm to find the optimal number of robots
and their base placements.

The rest of this paper is organized as follows: the problem
formulation is presented in Section II, Section III describes
the proposed approach for finding the optimal number of
robots and their base placements required to cover the whole
surface. Additionally, the proposed optimization algorithm is
presented. Finally, the simulations results with a cylinder, a
sphere, and an action car are presented in Section IV.

II. PROBLEM STATEMENT

Without loss of generality and to illustrate the proposed
coverage strategy, robotized stripping processes are consid-
ered. Multiple robotic systems composed of mobile platforms
with the arms mounted on them were used for surface
stripping. The stripping tool is mounted on the end-effector
of the manipulator. This technique of paint removal can be
applied on large surfaces like air-planes, buildings, cars, etc.
Since large surfaces can not be totally covered by a single
robot pose, repositioning of the robot is necessary to ensure
a complete stripping of the surface. Mobile platforms can
be moved manually or automatically between various poses
and the stripping process needs to be stopped during their
motion.

Our approach aims to find the optimal number of robots
N and their base placements required to totally cover the
surface. The optimization relies on two parameters: the shape
of the surface to be stripped, and the robot workspace.
Defining T as the set of poses T = {Ti ∈ SE(3), 1 ≤ i ≤
N}, the coverage problem can be formulated as follows:

min
N,T

N

Subject to g(N,T, S) = 0
h(N,T) ≤ 0

(1)

where:
N : the optimal number of robots,
S: the surface to be stripped,

g(N,T, S) =
⋃N

j=1 C(S,Tj)−S: the function to test if the
surface is totally covered,
h(N,T): the set of additional constraints.

It can be noticed that the task can be achieved using one
robot to N robots. Obviously, when the number of robots
increases the coverage task can achieved faster. If one robot
is only used, it has to be displaced N times while if N
robots are used then the task can be achieved at once without
moving the robots.

In addition, additional constraints can be taken into ac-
count during the optimization using h. For instance, the
distance between any two robots can be controlled using
a constraint implemented in h. In this paper, the robot
constraints are taken into account by projecting them into
the surface to be covered using the constraint projection
function C. Thus, C returns the reachable part of the surface
from a given pose Tj taking into account the different robot
constraints. The function C returns the intersection between
the robot workspace and the surface to be covered.

III. GENERAL FRAMEWORK

The general framework that deals with multiple robotic
systems for coverage problems is summarized in the
flowchart presented in Figure 2.

Fig. 2. General framework to optimize the number of robots and their
poses.

The inputs are the 3D mesh model of the object surface
and the robot workspace. Those inputs are used for the pre-
processing step and the optimization algorithm that generates
the set of robot poses. The surfaces are modelled using a
triangular grid model in common STL (STereo Lithography):
the Delaunay triangulation. In this representation, the surface
is defined by a point cloud where the points are connected
using edges forming small uniform triangles facets.

In this article, a trade-off between accuracy and compu-
tation time is made by discretizing the search space. At this
aim, a pre-processing step is proposed to turn the continuous



problem (1) into a discrete one as presented in Section III-
A. Then, we propose an optimization algorithm to solve this
discrete problem in Section III-C.

A. Pre-processing step

The pre-processing step turns the continuous 6-D search
space of the robot poses into a finite set F of favorite robot
poses. It is composed of three main steps:

1) Search space discretization: this step decomposes the
continuous available space around the object into a set P of
possible robot poses. Two adjacent poses are separated by a
discretization step s along x, y or z axis. In this article, s is
chosen as 0.1% of the length of the manipulator arm.

2) Constraint projection: from each pose P of P, we
assign a score C(S,P) that describes the percentage of the
reachable surface Si. The constraint projection function is
used to compute Si. From a given pose P, C(S,P) = 0 if
the robot does not reach the surface or if it provides some
unavoidable collisions between its body and the 3D surface.

Otherwise, C(S,P) = 100
Si

S
that is the percentage of the

covered surface Si regarding the total surface S from a given
pose P.

If the robot workspace is sensitive to the orientation
along z axis, a simple discretization process is performed
in order to define the optimal orientation that maximizes
the score C(S,P). Hence, the set of robot poses P contains
all possible poses with different {x, y, z} positions and the
nearly optimal orientation.

3) Favorite selection : the final step of the pre-processing
step is to determine the favorite poses set F ⊂ P. The
poses in F are all poses of P having a score greater than
a given threshold C(S,P) > t. The correspondent Si to
every favorite position F ∈ F is part of the set of reachable
surface part C.

B. Discrete optimization problem

The preparation phase turns the continuous problem (1)
into the following discrete optimization problem:

min
Ñ,T̃⊂F

Ñ

Subject to g(Ñ , T̃, C̃) = 0

∀l,m ∈ [1, Ñ ] hlm(T̃) ≤ 0

(2)

With:
• Ñ : the minimal number of robots,
• T̃: the set of optimal poses of the robots such that T̃ =
{T̃i ∈ SE(3), 1 ≤ i ≤ Ñ},

• C̃: the set of reachable part of the surface from each
pose T̃i ∈ T̃ such that C̃ = {C̃i, 1 ≤ i ≤ Ñ},

• h(Ñ , T̃, C̃): the function of the total coverage check.
A surface is considered totally covered if h(Ñ , T̃, C̃) =⋃Ñ
l=1 C̃l−S = 0. When a multi-robot system is considered,

one can consider collision avoidance through the constraint
hlm(T̃). In this case, the distance between any two robots
is greater than a predefined threshold δ defined with respect

the dimension of the robot workspace, e.g. hlm(T̃) = ||T̃l−
T̃m|| − δ.

Finding the optimal number of robot base placements can
be solved using a Binary Integer Programming (BIP). How-
ever, our problem is a NP-hard problem: an exact solution
of the minimum number of robots is hard to compute using
a Binary Integer Programming. Though, we propose a novel
combination between three algorithms: Greedy, Genetic, and
Simulated Annealing algorithms in III-C.

C. Hybrid optimization algorithm

In this Section, we present our hybrid optimization al-
gorithm that merges the advantages of Greedy, Simulated
Annealing and Genetic algorithms. Let’s start by briefly
presenting those algorithms :

1) The Greedy Algorithm: it is perceptively used to find
the optimal number of variables required to respect an
optimization function. It makes a local optimal choice at
each iteration, hoping to find a global optimum at the end of
the algorithm. This algorithm reduces complexity during an
exhaustive search: it has O(n) complexity instead of O(nK)
where K is the optimal number of robots.

The algorithm intends to add a robot, at each iteration,
until the surface is totally covered. The added robot is
chosen randomly in such a way that it should maximize the
coverage of the surface, while the previous robot poses are
not updated. This lead to locally optimal solutions.

2) Simulated Annealing: Simulated Annealing avoids lo-
cal optimum by using the temperature procedure [20]: the
chance of accepting worse solutions reduces as long as
the temperature decreases. This decision is made using an
Acceptance function that depends on the temperature and
the percentage of the covered surface using the different
robot poses. It also shows robustness and flexibility for global
search methods, it can deal with highly non-linear problems
and non-differentiable functions as well as functions with
multiple local optima.

3) Genetic Algorithm: it is a method of search often
applied to optimization problems or machine learning. Ge-
netic Algorithms are part of evolutionary computing, they
use an evolutionary analogy, “survival of the fittest” [21].
Instead of a single point generation at each iteration, Genetic
Algorithm generates a population of points. After that, the
best points are chosen as the optimal solution. It is more
efficient than the traditional methods and provides a list of
good solutions instead of a single solution. Thus, Genetic
Algorithm increases the likelihood of finding the global
optima.

4) Our hybrid algorithm: the structure of our hybrid
algorithm is inspired from greedy algorithms in order to
find the optimal number of robots. The hybrid Simulated
Annealing and Genetic algorithms are used in order to benefit
from their advantages, especially the speed of Simulated



Annealing with the variety of possible solutions of Genetic
Algorithm in order to find the optimal pose solution.

Algorithm 1: Hybrid optimization algorithm
Input : The set of favorite robot poses F, the surface

to be covered S, the coverage threshold p, the
maximum number of iterations Niter, the
initial temperature ts, the ending temperature
te, the maximum number of generations Ngen,
the maximum number of populations Npop

Output: Optimal number of robots Ñ and their poses T̃
1: Set U = F, V = ∅, Rpn = ∅, W = S, T̃ =

∅, Ñ = 0, Pop = ∅;
2: while g(Ñ , T̃, C̃) > 0 do
3: U = F;
4: Pop= a population initialized using U ;
5: ats = ts;
6: for k ∈ {1, . . . , Ngen} do
7: mi ← Elements of Pop with the highest coverage,

such as mi = {m1,m2} and m1 6= m2;
8: ρi ← Generatechildren(m1,m2), such as

ρi = {ρ1, ρ2};
9: σi ← Elements of Pop with the lowest coverage,

such as σi = {σ1, σ2} and σ1 6= σ2;
10: Let f1= Coverage(σi) and f2= Coverage(ρi);
11: if (f2 ≥ f1) || (f2 < f1 & random(0,1)<=

exp((f1-f2)/ats)) then
12: Replace σi by ρi in the initial population;
13: end if
14: ats = ats− coolrate;
15: if ats < te then
16: break;
17: end if
18: end for
19: Rpn← The element of Pop having the maximum

coverage;
20: V ← The correspondent coverage set of Rpn;
21: Ñ = Ñ + 1;
22: end while
23: T̃ = Rpn;
24: return Ñ and T̃;

Algorithm 1 describes our optimization algorithm. The
algorithm returns the number of robots Ñ with their optimal
poses T̃. The number of robots increases until the surface
is totally covered (line 2). For each iteration of Greedy
Algorithm, the optimisation of robot poses is accomplished
using a combination between Simulated Annealing and Ge-
netic algorithms. Genetic Algorithm is used to generate a
population of robot poses. The distance between any two
elements l and m, e.g. poses, of the population is respected
during the population generation hlm(T̃) ≤ 0. Then, for
each generation, the two elements having the maximum
coverage will be the parents of two children. If those two
children cover less than the two population elements having
the minimum coverage, then the Acceptance function of

Simulated Annealing is used to decide if the latter population
elements will be replaced by the children.

Hence, as a first step, a population Pop is initial-
ized (line 4). Then, for each generation of Pop, two children
are created from the two elements of Pop having the
maximum coverage of the surface (line 8). The decision
of replacing of the worst two elements of the population
by the two generated children is made in line 11 using
the Acceptance function of Simulated Annealing algorithm:
exp((f1-f2)/ats)). Those three steps are repeated until the
maximum number of generation Ngen is reached (line 6) or
the ending temperature te is attended (line 15). The element
of Pop covering the larger part of the surface is chosen:
Rpn (line 19). If all the robots in Rpn covers 100% of the
surface, the loop is broken. Otherwise, the number of robots
increases until 100% of the surface is covered.

IV. SIMULATIONS AND RESULTS

Our hybrid optimization algorithm is assessed on stan-
dard surfaces, e.g. a cylinder and a hemisphere, as well
as on a complex surface, e.g. a car using KUKA Light
Weight Robots (LWRs) each having 7 degrees of freedom.
Furthermore, the hybrid optimization algorithm is compared
to Greedy algorithm. The inputs of both optimization algo-
rithms are the different surface models S and the favorite
robot poses F.

A. Pre-processing step

The discretization step is set to 0.1 during the pre-
processing step. Each discretized point avoiding collision
with the surface and allowing to reach more than t = 15% of
the surface is considered as a favorite robot pose. We found
398 favorite robot poses for the cylinder, 375 for the sphere
and 397 for the action car represented as the red spheres in
Figure 3.

In this application, we consider a spherical workspace with
a radius of 1 around the base of the robot. Hence, the reach-
able part of the surface from a given position is considered
as the intersection between the spherical workspace and the
surface to be covered.

(a) Cylinder (b) Sphere

(c) Action car

Fig. 3. Surfaces to be covered by robots with the favorite base position
(red spheres)



For sake of simplicity, we used the point cloud to compute
the percentage of the covered surface. In global, we consider
a convex feasible set, hence if the three points of a triangle
are reachable, this triangle is supposed reachable. Those
triangles are inside the reachable set of the surface. Each
reachable point of the point cloud is represented by a red
point on the surface as it is clear in Figures 4 and 5.

(a) Cylinder (b) Hemisphere

(c) Action car

Fig. 4. Optimal base placements of different surfaces (greedy algorithm)

Greedy algorithm asserts that 6 robots are needed to totally
cover the cylinder (Figure 4a), 6 poses to totally cover the
hemisphere (Figure 4b), and 9 robots to cover the whole
action car (Figure 4c).

However, by applying our hybrid optimization algorithm,
we find that 5 robots are sufficient to totally cover the
cylinder (Figure 5a), 2 robots to cover the whole hemisphere
(Figure 5b), and 6 robots are enough to totally cover the
action car as shown in Figure 5c.

B. Comparison

As shown in Figures 4 and 5, the hybrid optimization
algorithm gives less number of robots needed to cover
the whole surface. It is clear that the distribution of robot
poses around the surface is more homogeneous when we
use our hybrid optimization algorithm. This point could
be an advantage if the number of robots composing the
multiple robotic system is lower than the optimal number of
robots required to cover the surface. Furthermore, the more
the distribution of robot poses is homogeneous around the
surface the more the cycle time is reduced. That is because
the distance between any two adjacent robot poses is almost
equal: the time required to move the robots of the multi-robot
system from one pose to the adjacent pose is optimized.

To assess the behavior of the proposed algorithm, we ran
the code several times for each surface type. Figures 6, 7, and

(a) Cylinder (b) Hemisphere

(c) Action car

Fig. 5. Optimal base placements of different surfaces (hybrid optimization)

8 compare both optimization algorithms by showing the av-
erage of the optimal number of robots (blue columns) and the
margin of this number (red line) required to totally cover the
cylinder, the sphere and the action car respectively. We can
notice that for all surface types, the average of the optimal
number of robots obtained using the proposed optimization
algorithm is lower than the average of the optimal number
of robots found using the greedy algorithm. Additionally,
the margin of the optimal number of robots obtained using
the hybrid optimization algorithm is tighter than the margin
computed using the greedy algorithm. Furthermore, we can
deduce that the proposed optimization algorithm provides
more accurate solutions for all surface types.

Fig. 6. The number of robots required to cover the whole cylinder using
greedy algorithm and the proposed hybrid optimization algorithm.

V. CONCLUSION AND FUTURE WORKS

This article presents a new approach to distribute tasks
between robots of multi-robot systems. It aims to find the



Fig. 7. The number of robots required to cover the whole sphere using
greedy algorithm and the proposed hybrid optimization algorithm.

Fig. 8. The number of robots required to cover the whole action car using
greedy algorithm and the proposed hybrid optimization algorithm.

optimal number of robots and their optimal poses required
to cover large and complex surfaces. An hybrid optimization
algorithm is proposed, it combines the three optimization
algorithms: greedy, genetic, and simulated annealing. We
proved that our hybrid optimization algorithm is more ef-
ficient than the Greedy one.

In future, the algorithm will be extended to tackle larger
surfaces considering that the robotic manipulator can be
placed on a crane. In addition, more realistic workspace will
be considered taking into account different robot constraints
such as kinematic constraints, singularity avoidance or max-
imal torque constraints. Furthermore, in case the number of
robotic systems is limited, the robots will be redistributed
based on new optimal path planner that considers the differ-
ent systems constraints.
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