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Sébastien LENGAGNE Thesis supervisor Associated professor at Clermont Auvergne INP - Polytech Clermont
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Abstract

Robots are gradually making their way from industries and laboratories into our daily lives.

Whether they serve as companions, teachers, receptionists, cleaners, or meet other needs, these

robots aim to improve our quality of life. However, robots’ decisional autonomy remains the

major challenge in robotics. To increase the robot’s autonomy, the researchers tend, on the

one hand, to classify the collaborations based on different criteria to gather the commonalities

between the human-robot collaborations. The goal is to detect the similar steps that the robot

must be able to accomplish to perform the various tasks. On the other hand, other works focus

on enhancing one or many of the fields required to set up a human-robot collaboration. The

robot must perform four standard steps to set up a human-robot collaboration: perception,

decision-making, motion execution, and evaluation.

This thesis aims to optimize the human-robot collaboration performance by improving the

robot’s decision-making process. We evaluate the collaboration performance based on different

changeable performance metrics. Hence, an optimized collaboration aims to benefit humans, such

as getting the task done faster or reducing the effort of human agents. However, an unoptimized

collaboration will bring nothing to humans or, on the contrary, will represent a nuisance, such

as slowing them down or overloading them, even if the task is finally accomplished.

We start by developing a global framework that optimizes the robot’s decision-making

process. We apply this framework to a non-intuitive assembly task, i.e., complex cognitive

processing is required to find the right place for each piece of the proposed assembly game. We

want to enhance the task time to completion by a collaborative human-robot team without

having to increase its physical capabilities (i.e., perception, trajectory planning, or low-level

control). Our proposed framework can improve human-robot collaboration while considering

different performance metrics. These metrics are considered regardless of the behavior of the

human agent.

We then apply this framework to a second application more complex (i.e., deforming a soft

object) that requires increasing the robot’s manipulation dexterity by improving its low-level

control. Indeed, we will consider this second application that requires increasing the robot’s

manipulation dexterity to maximize the optimization of the collaboration performance. A

human-robot collaborative team will have to co-manipulate the soft object to make it reach

desired shapes. The collaborative team can achieve this application using a deep reinforcement

learning approach. The idea is to train the agent (a single-arm robot or a dual-arm robot) in

simulation and to test it in real by replacing the second robotic arm with the human agent.

Keywords: Human-robot collaboration, Decision-making, Game theory, Reinforcement

learning.
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Résumé

Les robots se fraient progressivement un chemin depuis les industries et les laboratoires

jusqu’à notre vie quotidienne. Qu’ils servent de compagnons, d’enseignants, de réceptionnistes,

de nettoyeurs ou répondent à d’autres de nos besoins, ces robots ont pour objectif d’améliorer

notre qualité de vie. Cependant, l’autonomie décisionnelle des robots reste un défi majeur dans

le domaine de la robotique. Pour augmenter l’autonomie du robot, les chercheurs ont tendance à

classer les collaborations en fonction de différents critères afin de rassembler les points communs

entre les collaborations homme-robot. L’objectif est de détecter les étapes similaires que le

robot doit être capable d’accomplir pour réaliser les différentes tâches. D’autre part, d’autres

travaux visent à améliorer un ou plusieurs des domaines nécessaires pour qu’une collaboration

homme-robot soit mise en place. Le robot doit effectuer quatre étapes standards pour mettre

en place une collaboration homme-robot : la perception, la prise de décisions, l’exécution de

mouvements et l’évaluation.

Cette thèse se concentre sur l’optimisation des performances de la collaboration homme-robot

en améliorant le processus décisionnel du robot. Nous évaluons la performance de la collaboration

à l’aide de différentes métriques modifiables de performance. Ainsi, une collaboration optimisée

a pour but d’apporter des bénéfices aux humains, tels que l’accomplissement plus rapide de

la tâche ou la réduction de l’effort des agents humains. En revanche, une collaboration non

optimisée n’apportera rien aux humains ou, au contraire, représentera une nuisance, comme le

fait de les ralentir ou de les surcharger et ce même si la tâche est finalement accomplie.

Nous commençons par développer un framework global qui optimise le processus décisionnel

du robot. Nous appliquons ce framework à une tâche d’assemblage non intuitive, c’est-à-

dire qu’un raisonnement cognitif complexe est nécessaire pour trouver le bon endroit où

placer chaque pièce du jeu d’assemblage proposé. Nous voulons améliorer la réalisation de

la tâche par une équipe homme-robot collaborative sans avoir à augmenter les capacités

physiques de ce dernier (à savoir la perception, la planification de trajectoires ou le contrôle

bas-niveau). Le framework que nous proposons peut améliorer la collaboration homme-robot en

prenant en compte différentes métriques de performance. Ces métriques sont prises en compte

indépendamment du comportement de l’humain.

Nous appliquons ensuite ce framework à une deuxième application plus complexe (à savoir

la déformation d’un objet mou) qui nécessite d’augmenter la dextérité de manipulation du

robot en améliorant son contrôle bas-niveau. En effet, nous prenons en considération cette

deuxième application, qui nécessite d’augmenter la dextérité de manipulation du robot, afin de

maximiser l’optimisation de la performance de la collaboration. Une équipe collaborative homme-

robot devra co-manipuler un objet déformable afin de lui faire atteindre des formes désirées.
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L’équipe collaborative peut réaliser cette application à l’aide d’une approche d’apprentissage par

renforcement profond. L’idée est d’entrâıner l’agent (un robot à un ou deux bras) en simulation

et de le tester en situation réelle et ce en remplaçant le second bras robotique par l’agent humain.

Mots-clés : Collaboration homme-robot, Prise de décisions, Théorie des jeux, Apprentis-

sage par renforcement.
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Nowadays, robots are introduced more and more into our daily lives. In the next decade, we

can expect that they will no longer be just mechanical tools used primarily in industries but

will become true partners and companions in their own right. That is why there is an increasing
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Chapter 1 General introduction

interest in studying how robots should behave in environments shared with humans and how

they can collaborate to solve tasks.

1.1 Human-robot collaboration

The Human-Robot Collaboration (HRC) is the study of collaborative processes in which hu-

man and robot agents work together to achieve shared goals [13]. The HRC is an interdisciplinary

research field that combines classical robotics, human-robot interaction, artificial intelligence,

computer science, sociology, ergonomics, cognitive sciences, and psychology [14]. The HRC

is useful in daily life applications such as therapy [3,4], companionship [2], and education [1].

Figure 1.1 presents some daily life applications of HRC. The HRC is used in industrial tasks,

such as assembly [5], sawing [8], welding [7], and surface polishing [15]. Figure 1.2 presents some

industrial applications of HRC.

Figure 1.1: Examples of daily life applications of HRC: (A) Education [1], (B) Companionship [2],
(C) Autism disorders therapy [3], and (D) Rehabilitation therapy [4].

Figure 1.2: Examples of industrial applications of HRC: (A) Assembly task [5], (B) Co-
manipulation task [6], (C) Welding task [7], and (D) Sawing task [8].

The HRC is challenging to set up because the more the task the robot performs in col-
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laboration with the human is complex, the more the robot should be able to make decisions

autonomously. For example, in the case of a mobile robot working in a museum to make tourists

visit, the robot must distinguish the group of tourists it guides from other people, avoid hitting

people or objects, respect social distancing, speak only when it is in front of a piece of art,

. . . [16]. The application can become more complicated when robots and humans cooperate

to perform a common task, such as sharing the load of heavy objects. In addition to what

the robots have to handle previously (obstacle avoidance, human detection, etc.), they have to

predict the intentions of the humans to coordinate their movements with them [17].

Despite the recent development of several well-performing robots equipped with rich pro-

prioception sensing and actuation control, these robots are still far from fully autonomous to

collaborate smoothly with humans. To increase the autonomy of the robots, the researchers tend

to classify the collaborations based on different criteria to gather the commonalities between the

HRCs. The goal is to detect the similar disciplines that the robot must be able to accomplish

to perform the various tasks. Several fields are required to set up a HRC. The robot has to

perform four main standard steps: perception, Decision-Making (DM), motion execution, and

evaluation.

1.2 Classification of human-robot collaborations

Classifying HRCs according to their similarities helps to increase robots’ decisional autonomy.

In the case where two robots should have similar capabilities and perform similar actions,

they can be replaced by a single more autonomous robot. There are several ways to classify

the type of collaboration in the literature. A HRC can be classified according to the level of

autonomy of the robots [18], the type of robots that collaborate [19], the category of the task to

perform [19,20], and the benefit that the collaboration brings to the human agents.

1.2.1 Robot’s level of autonomy

The level of autonomy describes how much the human is involved in the collaboration [21].

From “human decides about it all” to “computer determines everything and acts independently”

might represent the progression of autonomy levels. The classification according to the level

of autonomy of the robot proposed in [18] and [19] classifies a HRC into one of the following

categories:

• Teleoperation: when the human controls the robot completely, as in the case of remote-

controlled drones, whether in an aerial, terrestrial or underwater environment.

• Supervised control: the human commands and monitors the robot’s actions but allows

it some autonomy to make straightforward actions within the tasks, such as the robot

searching for or grasping objects, etc.
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• Autonomous systems: the human agent determines the task goal, and the machine has to

achieve it.

• Social interaction: social robots are mostly autonomous since they assist or guide people.

1.2.2 Robot’s type

We then present the HRC classification based on the type of robots. Robots are traditionally

categorized according to their morphology, which typically enables a visual and functional

depiction of their use [19]:

• Serial robot: A robot made of a serial kinematic chain that ends up with a gripper.

• Parallel robot: A robot with a mobile platform attached to a fixed base by several parallel

identical kinematic chains.

• Mobile robot: A robot with different modalities (i.e., wheels, legs, etc.) that moves in the

environment.

1.2.3 Category of the application to be performed

Initially, the classification of the HRC based on the kind of application to be performed was

split into two primary categories: industrial and non-industrial applications related to service

robotics. Other categories have been added as the use of robots in daily life has advanced, such

as the one described by [19], which contains the following application categories: industrial,

domestic, medical, military, etc. Cutting-edge publications have suggested a taxonomy that is

even more specific. In [20], they introduce new categories, including urban search and rescue,

walking aid for the blind, toy, or delivery robot. Other categories can also be added, such as

education, physical therapy, cognitive therapy for autism spectrum disorders, etc.

1.2.4 Impact of collaboration on human agents

The problem with using the application to categorize collaboration is that it is sometimes

unable to identify the difference between interactions. Let’s consider, for example, the case of

a collaboration in which a robot helps the elderly. This assistance can be either physical or

psychological. In either case, the approach to operating the robot will be very different. The last

way to classify the HRCs that we will present is according to the benefit that the collaboration

brings to the human agents, i.e., social or physical. It is the most used one in the literature [22].

This way of classification allows us to make a distinction between the interactions that other

ways of classification cannot. This is why we have judged that classifying the interactions

according to their impact on the human remains legitimate while effectively separating them.
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HRC applications can have social and/or physical benefits for humans [11]. Social collabora-

tion tasks include social, emotional and cognitive aspects [23] such as care for the elderly [24,25],

therapy [26], companionship [2], and education [1]. Social robots, such as Nao, Pepper, iCub,

etc., are dedicated to this type of task; however, their physical abilities are very limited [27].

For the physical HRC (pHRC), physical contacts are necessary to perform the task. They

can occur directly between humans and robots or indirectly through the environment [28].

pHRC applications are mainly used in industrial environments (e.g., assembly, handling, surface

polishing, welding, etc. [15]). pHRC is also used in the Advanced Driver-Assistance Systems

(ADAS) for autonomous cars [29].

In this thesis, we want to create a framework that works for both social and physical

collaboration in contrast to previous works that are majorly only dedicated to one or the other.

1.3 Setting up of a human-robot collaboration

Many components are involved in setting up a HRC. We have gathered them in Figure 1.3.

Four standard steps should be fulfilled to set up a robot that collaborates with humans:

perception, DM, motion execution, and evaluation. The works available in the literature tend,

on the one hand, to either create or improve the components that define how the robots perform

a task in collaboration with humans to increase the robots’ decisional autonomy. On the other

hand, there are works dedicated to evaluating collaboration. Some studies suggested particular

relationship between the four standard steps (cf. Figure 1.3) such as active perception [30],

reflex [31], and re-planning [32]. Since they did not necessarily consider HRC while designing

those special relationships, we mention them as the state-of-the-art and a future perspective for

HRC, but we will not explain them in detail in this thesis.

1.3.1 Perception

Perception is the first step in making the robot collaborate with humans. The robot must be

capable of perceiving and recognizing its surroundings by relating the data it receives from the

sensors to the environment in which it is. This is essential because the robot must be able to

find the objects involved in collaboration with the human, detect the human it is collaborating

with and their intentions, and avoid operator confusion when several humans are present in the

workspace. Perception in the case of the HRC breaks down into the location recognition and

the detection of objects, human agents, their actions, and their intentions.

Object detection

Object detection and differentiation between object types are crucial in HRC. Indeed,

the robot must distinguish between the obstacles to be avoided, the fragile objects not to be
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Figure 1.3: Relationship between the different components involved in setting up a HRC. The
green arrows show their standard relationship, and the cyan arrows represent their special
relationship.

touched because they are easily breakable, and the objects that will be manipulated during the

collaboration. Object detection enables the robot to autonomously understand which object is

used for what and proactively perform collaborative assistance without specific programming or

commanding [33].

Location recognition

Location recognition is highly important within HRC because when the robot can determine

its location, it can adapt to its social rules. However, the problem of location recognition remains

complicated since identifying the same street corner within the whole city or country when it

can be captured under different lighting or change its appearance in time is challenging. The

fundamental scientific question is what is an appropriate representation of a place rich enough

to distinguish similar-looking areas while compactly representing entire cities or countries [34].

Human presence detection

The robot must be able to detect the human agents around it and especially to distinguish

the agents it interacts with. Once the agents involved in the collaboration are identified, the

robot should track them all over the interaction. The most used technique in the literature to

cope with this problem is face detection [35]. Some approaches go behind face detection, such
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as the approach based on age detection (which will be the discriminating point to distinguish

people) introduced in [36].

Human intention detection

Human intention detection is necessary to allow the robot to recognize and predict human

actions. Therefore, it enables the robot to detect the activity of the human agents and

subsequently collaborate appropriately with them. Three steps are required to transmit the

human’s intention to the robot [37]:

• Intent identification: the human’s intention must be defined.

• Measurement: the modality (i.e., sensors) by which the robot measures intent information

must be determined.

• Interpretation: The robot’s understanding of this measure as a representation of intent

information must be defined. The way this measure will be integrated into the robot’s

decision structure when the data is received by it must also be specified.

Human emotion detection

For cognitive collaboration, such as during therapy, the robot must be able to identify the

human’s state of mind (i.e., how they are feeling). Approaches to recognizing the person’s

emotions determine them from facial expressions [38], body language [39,40], voice [38], or a

combination thereof. In [40], other modalities, including physiological signals and text, were

also studied, and various combinations of two or more of the modalities mentioned previously.

1.3.2 Decision-making

Once the robot can perceive its surroundings, the DM is the second step in making robots

collaborate with humans. This step is crucial to make robots capable of intelligence and intuition

to bring them out of industries and integrate them into our daily lives. DM approaches are also

utilized to enable robots to adapt to humans when working on a task in collaboration.

Robots can adapt to humans in different situations by implementing five steps in a DM

process [41]: (i) gathering relevant information on possible actions, environment, and agents,

(ii) identifying alternatives, (iii) weighing evidence, (iv) choosing alternatives and selecting

actions, and (v) examining the consequences of decisions. These steps are usually modeled in

computer science using a DM method with a strategy and a reward function [42]. The DM

method models the relationship between the agents, the actions, the environment, and the task.

The DM strategy is the policy of choosing actions based on the value of their reward calculated

by the reward function. The reward function (or utility function) calculates a reward for each

action. It allows the robot to distinguish between right and wrong actions to perform. That’s
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why we decided in the remaining of this thesis to work on the formulation of the reward function

to optimize the performance of the collaboration.

The DM can be a separate step in setting up a HRC (such as represented in Figure 1.3),

but it can also include the perception, trajectory planning, or robot’s low-level control step.

In this case, the reward function is modified to evaluate more complex actions, including the

perception, trajectory, or robot’s low-level control.

1.3.3 Motion execution

After the robot has observed its environment and has made a decision about the actions

to be performed, it must proceed to the execution of the actions. If the robot has to execute

motion actions, it will need to do two steps: plan the trajectory of its movement and finally use

a controller to perform the movement. Trajectory planning and robot control are the third and

fourth steps to make the robot collaborate with humans. We have grouped these two disciplines

because they are strongly linked within the motion execution step.

During the last few years, the complexity of the tasks achieved by robots in collaboration with

humans increased exponentially. Especially since the emergence of assistive robots, teleoperated

robots, assisted driving systems used in cars, robotic wheelchairs, exoskeletons, and rehabilitation

robots [43]. These robots are used to increase the mobility of people with physical or cognitive

deficits, assist surgeons, improve the user’s strength capabilities, enhance the amount and

intensity of physical therapy, etc. Our point here is to show that the human-robot collaboration

domain involves different kinds of robots accomplishing various tasks that sometimes have

nothing in common except that the robots should have high physical capacity and precision to

achieve the task. This leads the robot to plan a safe, short, and economic trajectory and have

satisfactory low-level control of the joints to be as precise and efficient as possible.

Trajectory planning and the robot’s low-level control are studied within the literature

together or separately. The goal of trajectory planning within HRC applications is to find

the best motion trajectory without hitting any obstacle while avoiding harming the human

agents [44]. Once the motion trajectory is defined, low-level control of the robot’s joints is

necessary to execute the motion. Many controllers are utilized in the literature within HRC

applications [45, 46], such as position controllers, velocity controllers, force controllers, effort

controllers, etc.

1.3.4 Evaluation

As soon as the actions are executed, there is only one thing left to do: evaluate the HRC.

This is the last step necessary to make the robot collaborate with humans. The evaluation can

concern several components involved in setting up the HRC, such as perception, trajectory, and
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control. The evaluation can also be higher level, i.e., based on the benefit that the collaboration

brought to the human agents. For this, performance metrics can be used. We can classify these

metrics according to the type of task the collaborative team performs. This thesis aims to

optimize the HRC. The evaluation step is crucial when the objective is to enhance the HRC.

The first step for improving the HRC is to be able to evaluate the collaboration because it

allows the robot to detect what is bad and target the aspects to be enhanced.

Some works in the literature tend to evaluate the performance of the collaboration using

some performance metrics. On the one hand, some works focus on evaluating one specific

metric, as done in [47], where the author assesses several human-robot collaborative teams

performing different tasks using the fluency metric. On the other hand, other works create a

global framework to evaluate, in general, the HRC based on several metrics. In [48], the authors

developed a global framework to assess the HRC based on more than twenty performance

metrics, among which the cognitive load and the physical ergonomics.

In Table 1.1, we gather the main performance metrics used in the literature [10–12] for

evaluating the HRC classified based on the task types (navigation, perception, management,

and manipulation social). We define each metric according to its usage in the different task

types. As we can notice from Table 1.1, some performance metrics are common to more than

one type of task. Consequently, we introduce some standard metrics used for evaluating HRC

in general rather than the performance of a specific task. To assess a HRC, we have to choose

the best metrics with respect to the goal of the application and the benefit the human agents

can expect from the collaboration. In the applications we utilized for evaluating the general

framework we propose within this thesis, we consider the time to completion, the number of

human errors, and the robot manipulation dexterity.

1.4 Thesis context

This thesis receives funding from the Auvergne-Rhône-Alpes Region in France through the

ATTRIHUM project, which includes four laboratories affiliated with the Université Clermont

Auvergne (UCA): Institut Pascal, LAPSCO, LIMOS, and PHIER. This project is dedicated

to human-robot interaction. It aims, on the one hand, to measure the impact of humans on

robots and vice-versa. On the other hand, the project’s final goal is to optimize human-robot

interaction. From our side in Institut Pascal, we focus on enhancing the performance of HRC

by improving the robot’s decision-making process and its manipulation dexterity.

1.5 Thesis objective

We want, through this work, to optimize the HRC by bringing more benefit to the human

agents from the collaboration. One way to do that is to improve the robot’s perception and

10
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Task Performance metrics Definition or usability

Navigation Failure rate Percentage of navigation tasks completion failure

Accuracy The accuracy of the navigation

Ergonomy or posture Human ergonomy or posture

Time to completion The time needed to complete the task

Rapidity The time needed by the robot to adapt itself to the human or vice-versa

Perception Velocity The speed of the perception of the robot

Accuracy The accuracy of the navigation

Time to completion The time needed to complete the task

Fluency The fluency of the perception

Effectiveness Percentage of the success of the robot’s perception

Number of errors The number of failures in the robot’s perception

Management Time delivery The time needed to deliver the request from the robot to the human

Time request The time needed by the human (operator) to notice the request

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot misinterprets human desires

Trust Trust of the human in the robot

Number of actions The number of actions needed to accomplish the task from the human and the robot

Cognitive load The workload required for the human to adapt to the robot

Manipulation Positional accuracy The accuracy of the position reached by the robot

Positional repeatability The repeatability of the robot to reach the same position

Velocity The speed of the robot to do the manipulation

Time to completion The time needed to complete the task

Rapidity The time needed by the robot to adapt itself to the human or vice-versa

Cognitive load The workload required for the human to adapt to the robot

Ergonomy or posture Human ergonomy or posture

Dexterity The robot’s dexterity in doing the manipulation

Effort or force The physical effort (or force) that the human must provide to perform the manipulation

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot is misinterpreting human desires

Number of actions The number of actions needed to accomplish the task from the human and the robot

Social Persuasiveness The ability of the robot to persuade the human about something

Trust Trust of the human in the robot

Engagement in social
characteristics

Engagement in social characteristics such as emotion, dialogue, and personality. The
engagement can be measured through the robot’s acquisition time for capturing human

attention and the duration of holding human interest

Compliance The compliance of the robot in appearance, adherence to norms, etc.

Common metrics Effectiveness The percentage of the mission that was accomplished with the designed autonomy

Time to completion The time needed to complete the task

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot misinterprets human desires

Number of actions The number of actions needed to accomplish the task from the human and the robot

Cognitive load The workload required for the human to adapt to the robot

Self-awareness The robot knows its accuracy

Autonomy The robot autonomy

Table 1.1: Some metrics considered for the evaluation of HRC classified based on the task
types [10–12].

control techniques. The other one is to enhance the DM process used by the robot by considering
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the performance metrics. The second way allows optimizing the collaboration from a higher

level since we can consider different metrics, especially as the robot’s perception and control can

be included in the robot’s DM process. This work aims to increase the performance of HRC

through the DM process of the robots.

DM techniques are used to make robots able to adapt themselves to humans while accom-

plishing a task in collaboration. A DM process comprises, as mentioned previously, three main

parts: a DM method, a DM strategy, and a reward function (or utility function). Previous

studies’ goal in the context of HRC is to adapt the robot to human behavior to achieve a task

without considering how well the interaction unfolds. Some works propose dedicated frameworks

to improve the HRC performance by considering a fix performance metrics that cannot be easily

changed within their architecture.

We aim to develop a global framework in which we focus the reward function on increasing

the performance of the collaboration between humans and robots based on several changeable

performance metrics. For that, we isolate the impact of the performance metrics in the reward

function such that we can change them within the same framework. The reward function will

comprise three parts: the first is for optimizing the metrics, the second is for dealing with the

task constraints, and the third is for considering the robots’ physical abilities and ameliorating

their manipulation dexterity. Figure 1.4 presents an overview of our framework. We test our

framework through a challenging task in terms of DM process in Part II and a complex task in

terms of control in Part III.

1.6 Contributions

Our first contribution is the proposed DM framework we introduced in Figure 1.4 that can

deal with the change of the performance metrics used for optimizing the HRC. State-of-the-art

techniques consider the HRC as an optimization problem in which the reward function is

defined to accomplish the task regardless of how well the interaction is performed. When the

performance metrics are considered, they cannot be easily changed within the same framework.

In contrast, our DM framework can easily handle the change of the performance metrics from

one case scenario to another. Our method treats HRC as a constrained optimization problem

where the utility function (or reward function) is split into three main parts. Firstly, a part

that deals with the performance metrics to assess the performance of the collaboration. It is the

only part that is altered when modifying the performance metrics. It allows for control over

how the interaction proceeds and ensures that the robots’ behaviors will be directly adjusted to

those of the human agents involved in the collaboration. Secondly, a part that handles the task

constraints by specifying how to complete the task. Thirdly, a part that contains the robots’

physical abilities. Accordingly, the utility function may be designed to enhance the robot’s

12
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Figure 1.4: Overview of our global framework for optimizing the HRC through improving the
robot’s DM process.

dexterity in manipulating objects.

We evaluated our framework through two applications. Firstly, we tested our framework

for achieving an assembly task by a human and a Nao robot. Since social robots such as Nao

have significant limitations for manipulation (their motions are slow and inaccurate) that are

difficult to improve or even impossible, we concentrated the reward function on enhancing the

performance of the collaboration based on several changeable performance metrics without

ameliorating the agents’ abilities. We consider within our framework a changeable unrestricted

number of performance metrics that are usually optimized no matter how the human is behaving.

To summarize, the contributions of our framework when applied to the assembly task are:

• the easily change of the performance metrics from one scenario to another without changing

anything in our formalization except the part in the reward function related to the metrics,

and

• the improvement of the collaboration performance with the possibility of improving or not

the robot’s manipulation dexterity since we isolate that part in the reward function.

Secondly, to further optimize HRC performance, we have to enhance the manipulation
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dexterity of the robot. For that, we start by improving the robot’s manipulation dexterity

while it performs a soft objects (e.g., deformable linear objects) deformation task without

collaborating with humans. For this application, we consider the improvement of the robot’s

manipulation dexterity in the reward function thanks to a Deep Reinforcement Learning (DRL)

algorithm. Our proposed solution is easier generalizable than the DRL frameworks presented in

the literature. Indeed, their agent (either a single-arm robot or a dual-arm robot) is trained

to perform a manipulation from constant initial to constant target deformations, and it is not

trained to deal with different configurations. To sum up, the contributions of our framework

when it is applied to a manipulation task are:

• Its generalizability, i.e., we train the agent only once (using a specific Soft Object (SO)),

and it can deform the SO starting from a different initial position and end up with a

different desired shape. Moreover, the agent can make the SO reach an untrained position,

i.e., we train the agent on a small workspace and test it on a bigger one.

• It can achieve a more complex task than the ones performed in the literature. Indeed, the

agent deforms a foam bar by making some selected mesh nodes reach the corresponding

desired positions in 3D space, potentially involving complex torsion motions.

In the future, our idea is to replace one of the two robotic arms with a human in real tests

to make the human-robot collaborative team able to perform a co-manipulation task involving

SOs.

1.7 Summary of the Thesis

This thesis is organized as follows. Part I makes a general introduction about HRC and

sums up the state-of-the-art of the robot’s DM approaches for HRC in two chapters. Chapter 1

makes a general introduction about HRC and presents how the HRC can be classified. It also

introduces the main disciplines required for setting up a HRC and the performance metrics

used to evaluate it. The robot has to perform four main standard steps: perception, DM,

motion execution (trajectory planning and low-level control), and evaluation. This chapter also

presents an overview of our proposed framework for optimizing HRC performance based on

several changeable metrics and summarizes our thesis contributions. Since this work focuses on

improving the DM by evaluating it through performance metrics to enhance the HRC, Chapter 2

reviews the work in the literature that uses the DM process of the robot to optimize the HRC

performance. It presents the existing DM processes in the state-of-the-art that either focus

on high-level decisions or include one or more of the other HRC setting up steps (perception,

trajectory planning, or low-level control).

Part II introduces our DM framework in the context of HRC. Contrary to the literature

DM frameworks, which cannot easily manage the change of considered performance metrics
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to optimize the HRC, our can easily handle the performance metrics change from one case

scenario to another. This part is split into two chapters. Chapter 3 presents our framework from

the mathematical point of view. Chapter 4 presents the carried out experiments in real and

simulation on an assembly task (i.e., a game based on a construction kit). In this application,

we optimize the HRC without having to increase the robot’s physical abilities.

In Part III, the goal is to integrate the improvement of the robot’s manipulation dexterity

by making it accomplish a more complex task (i.e., deforming a SO) while enhancing its

low-level control. This part contains three chapters. Chapter 5 introduced the background

on the deformation of soft linear objects, deep reinforcement learning approaches, and the

deep deterministic policy gradient algorithm. Chapter 6 presents the results of the conducted

experiments on the SO to prove the effectiveness of enhancing the robot’s physical dexterity

thanks to a deep reinforcement learning approach. We train the robot only once (using a specific

deformable object), and it can deform the SO starting from a different initial position and

ending up with a different desired shape. Moreover, the robot can make the deformable object

reach an untrained position. Chapter 7 presents the results of the conducted experiments on

the SO manipulated by a dual-armed system. Chapter 8 is the general conclusion of this thesis

which summarizes the work achieved within this thesis and discusses our perspectives.
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The previous chapter introduced the main fields necessary for setting up a Human-Robot

Collaboration (HRC). We decided in this thesis to focus on the robot’s Decision-Making (DM)

process to optimize the collaboration by keeping the robot’s abilities unchanged in the first

place. In the second place, we used the robot’s DM even to improve its manipulation dexterity.

In this chapter, we introduce the most popular methods, strategies, and utility functions used

in the DM process within HRC.
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A DM method models the relationship between the agents, the actions, the environment, the

task, etc. A strategy defines how to select the optimal actions (or alternatives) each agent can

make based on the reward calculated by the reward function (or utility function) for each action.

All methods and strategies can be used to achieve different tasks, and there is no pre-written

rule that implies that one will necessarily perform better than the others.

2.1 Decision-making methods

DM methods are used, as mentioned before, to model the relationship between the task, the

agents accomplishing it, their actions, and their impact on the environment. In this section, we

introduce the DM methods used in the state-of-the-art. Probabilistic methods, deep learning,

and game theory are among the most widespread DM methods. In the literature, fewer works

utilize analytic hierarchy process, optimization methods, and ensemble learning as DM methods.

Table 2.5 introduces the advantages and disadvantages of these DM methods.

2.1.1 Probabilistic methods

Probabilistic methods are the first and most widely used in DM processes. Markov’s decision

processes (e.g., Markov chains) are the most used ones. This is because a Markov Decision

Process (MDP) models the uncertainty of the effects that the action will have on the environment

as well as the uncertainties that the observations will correctly represent the current state of

the environment and the agents. A MDP evaluates each state-action pair by attributing to the

action a reward that is calculated relative to the HRC’s objectives [49]. For example, a partially

observable MDP is used to compute the human agent’s trust in the robot. This computed trust

is integrated into the robot’s DM process so that it can infer the human agent’s trust in it all

over the interaction, reason about the effect of its actions on human trust, and choose actions

that maximize team performance [50].

Some studies use other DM methods such as Gaussian processes (e.g., Gaussian mixtures),

Bayesian optimization (e.g., likelihood functions), and belief functions. A Gaussian process

is helpful when the stochastic process random variables follow a normal distribution. It is

utilized mainly to detect human actions and intentions, such that the robot considers them while

choosing its actions. In [51], a learning method based on a Gaussian mixture model representing

the human’s movement trajectories is utilized to predict the space occupied by the human agent

in the workspace. This information is incorporated into the robot’s DM process to prevent the

robot from hitting the human when it decides on the best trajectory to perform.

Bayesian optimization is a probabilistic approach based on Bayesian inference [52]. This

means that we exploit previously observed (known) events to predict the probability of future

events using a probability density function such as a likelihood function. Bayesian optimization is
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mainly used to compensate for uncertainties, for example, in the case of a robot that complements

the human’s capabilities by compensating for uncertainties of different tasks [53].

Probabilistic
DM method

Advantages Disadvantages

Markov decision
processes

They are generalizable because they are
adaptive to changing and unknown

characteristics of the environment [54].
They have an excellent rapidity, accuracy,

and flexibility ratio [55].

They have a large number of settable
parameters; therefore, they are

time-consuming [54]. In the case of an
inaccurate model, the results will be wrong
since it might lead to executing undesired

behaviors [55].

Gaussian
processes

They can be generally used as simple
methods with fewer settable parameters.

They provide safety guarantees by
ensuring the error prediction [56].

The data have to follow a Gaussian
distribution (i.e., normal distribution) [57].

For applications that require high
computational complexity, the Gaussian
process is used offline on batches of data.

This is inadequate with applications where a
fast adaptation through online learning is

necessary to ensure safety [56].

Bayesian
optimization

It models and considers the worst-case
scenario [58].

The computational cost will be high for
complex problems because calculating the

worst-case scenario will take lots of
iterations [58].

Belief functions They can deal with ignorance,
imprecision, and uncertainty [59].

They often lead to cumbersome or even
intractable calculations [59].

Table 2.1: Advantages and disadvantages of probabilistic DM methods.

The theory of belief functions (also named Dempster-Shafter theory or evidence theory)

generalizes the Bayesian theory [59]. It is a general framework for reasoning with uncertain

information. In other words, this theory combines available evidence from different sources to

evaluate the degree of belief the agent can have in that evidence, thanks to the belief functions.

In [60], the authors develop a system that enables multimodal sensing of ongoing human actions

and predict their behaviors during a human-robot collaboration in the operating room. They

used the Dempster-Shafter theory for sensor fusion so that the robot robustly knows the human

action and considers it when making decisions.

Furthermore, some complex tasks require combining two or several probabilistic DM methods.

For example, in [61], a robot has to move in coordination with a human while transporting

an object. Consequently, the robot estimates the human impedance and its motion intention

for making decisions about its movements thanks to Bayesian optimization. Furthermore, it

considers the stiffness of the environment by calculating the covariance of a Gaussian mixture

model. Table 2.1 presents the advantages and disadvantages of each probabilistic DM method.
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2.1.2 Deep learning

The interest in using Deep Learning (DL) in DM methods began very early due to unsatisfac-

tory results of probabilistic methods in managing uncertainties in complex tasks. Nowadays, the

usage of DL is widespread as a DM method. DL is a variety of artificial neural network-based

machine learning in which input attributes (i.e., data) are processed through successive layers

to extract higher-level features progressively [62]. A neural network consists of several nodes or

neurons. Within each node, there is a set of inputs, weight, and a bias value [63]. The bias shifts

the activation function (which decides whether a neuron should be activated or not [64]) by

adding a constant to the input data. The weight transforms the input data within the network’s

hidden layers [62, 63]. Weights and biases are both learnable parameters inside the network. A

model consisting of a set of weights and biases is used to establish the relationship between

the input attributes and the desired output attributes by predicting the values of the output

attributes [63]. The learning goal is to reduce errors between those predictions and the desired

output attributes. This can be made using an optimization algorithm (based on a descent

gradient approach), which changes the weights and the biases so that the errors between the

predictions and the desired outputs are reduced [62,65]. The deep neural networks are classified

into: supervised learning, unsupervised learning, and Deep Reinforcement Learning (DRL) [66].

The advantages and limitations of each DL method are presented in Table 2.2.

On the one hand, supervised learning attempts to discover the relationship between input

attributes (i.e., input dataset) and a target or output attribute (e.g., a class label in classification

or a real number in regression) [65, 67]. A model represents this relationship. The goal is to

learn the model which predicts the correct value of the target attribute given the new input

attribute [68]. For example, a dual-arm robot collaborates with a human to perform an assembly

task. The robot does the intended action in response to the specific gesture made by the human

when it recognizes it, thanks to a supervised learning method [69].

On the other hand, unsupervised learning tries to find patterns or structures output for the

input attributes [70]. The goal is to build representations of the input that can be used for

the DM process, predicting future inputs, etc. [71]. It is used for clustering and dimensionality

reduction. For example, an unsupervised learning algorithm detects human motion to ensure

their safety while collaborating with robots to achieve industrial tasks. The robot’s objective is

to estimate the remainder of the human motion trajectory given an observed part of the human

motion to prevent interference while performing a complementary task [72]. To summarize,

supervised learning utilizes labeled input and output data, while unsupervised learning does

not.

As regards DRL, the agent’s goal is to learn how to interact with its environment. The

agent interacts with the environment by making actions [71]. These actions change the state of

the environment to the next state. The agent’s observation of the environment describes the
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changes that happened by moving from the current state to the next one [22]. As a result of

making an action, the agent also receives from the environment a reward that evaluates the

action taken with respect to the desired learning goal [71]. The long-term goal of the agent is

to maximize the future rewards it receives over iterations (or steps) [22]. Figure 2.1 presents

this DRL procedure. DRL is close related to decision theory and control theory [71]. The usage

of DRL in HRC applications is vast. It can be used for cognitive-oriented interaction, such

as task allocation, or physical-oriented interaction, such as co-manipulation. In [73], a DRL

algorithm is used for optimizing an assembly task allocation. Whereas, in [74], a DRL algorithm

is utilized to make the robot adapt to human movements by adjusting its motion control while

co-manipulating (lifting) an object.

Figure 2.1: DRL procedure.

DL method Advantages Disadvantages

Supervised
learning

It can tolerate noisy data and manage to
classify untrained patterns. It can be used

when the knowledge about the
relationship between attributes and

classes is slight [75].

It involves a long learning time and needs
large training datasets; therefore, it is

unsuitable for all applications. It requires
several parameters to be determined
empirically, such as network structure,
number of hidden layers, and number of

neurons in each layer [75].

Unsupervised
learning

It can perceive what the human mind
cannot. There is less complexity

compared to supervised learning because
there is no need to interpret the

associated labels [76].

Since there is no label or output measure to
certify their usefulness, it is difficult to
determine whether the results will be

valuable. The results are often less accurate
than using supervised learning [76].

Deep
reinforcement

learning

The agent learns to interact with its
environment and is getting better while

learning [77].

The agent is poorly performing at the
beginning of the training [77].

Table 2.2: Advantages and disadvantages of DL methods.

Two main issues should be overcome when using DRL: the computation time [78] and using

a real robot to perform the task while the training was carried out in simulation [79]. The use

of complex DRL networks increases learning computation time. This increase is related to the
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number of objectives the chosen actions must satisfy, especially if these objectives conflict [78].

One approach to resolving this problem is exploiting the Transfer Learning (TL) principle to

apply it to DRL [80]. TL is based on one of the human psychological learning principles. When a

human learns to perform a task, their knowledge serves as a starting point for performing another

task that has similarities with the first. When this concept is applied to DRL, the information

about the different states of the environment and the learning about the correct actions to

perform are shared across tasks, ensuring a faster learning process [78,80]. For example, this

solution has been adopted to transfer models learned by agents among human-robot collaborative

assembly industrial tasks [81].

Another solution to this problem is to use Imitation Learning (IL), which aims to mimic

human behavior to complete the application [82]. The starting DRL policy is the one learned

through IL which reduces the DRL computation time [83]. The DRL algorithms combined

with IL and an environment representation are the main elements for successful learning with a

performance level as good as humans when performing the same task. The policies obtained can

generalize well and adapt rapidly to new scenarios [82]. For instance, this approach has been

used to make a human-robot collaborative team achieve a co-manipulation task (e.g., lifting a

table) [84].

Another approach is to use parallel learning, which leads to executing multiple agents in

parallel on various environment instances. Learning from parallel agents experiencing various

different states ensures that the training data are decorrelated and can be collected faster [85,86].

This improves the overall learning time while achieving a better result from the generalization

point of view [87]. For example, this solution has been adopted to optimize the assembly task

completion time achieved by a human-robot collaborative team [88]. Table 2.3 presents the

advantages and limitations of each approach we presented to solve the DRL computation time

issue.

The second problem is that the agent’s training is made using simulated environments,

and the target is to test the agent in real. The training is done in simulation due to the

limitations of gathering real-world data and the risks of training a real robot [79]. When

the models are implemented in real robots, the difference between the simulated and real

worlds degrades the performance of the learned policies [89]. To close this sim-to-real gap and

achieve more effective policy transfer utilizing sim-to-real transfer learning techniques, multiple

research efforts are currently focused on this topic [79]. The selected sim-to-real techniques

change depending on the task to be performed, and the sensors used in real [79,90]. Domain

Randomization remains the most widely used sim-to-real technique in the literature but not

necessarily the best [90]. It consists of sampling simulation parameters (such as camera position,

light position, textures, etc.) from probability distributions centered at a noisy estimate of the

ground truth [79,90]. As a result, the agent can disregard small changes in the environment,
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making it more robust to domain changes. There are other sim-to-real techniques such as [79]:

Domain adaptation, imitation learning, meta-learning, knowledge distillation, etc. For instance,

a sim-to-real approach has been used to construct a human-robot shared control framework for

robotic surgery [91].

Approach Advantages Disadvantages

Transfer
learning

Transfer learning will help perform deep
learning tasks with fewer data and
resources than needed for “classical”

learning techniques [92].

Transfer learning only works if the initial
and target tasks are similar enough to enable
transferring what the agent learned and

avoid a negative transfer [92].

Imitation
learning

The adaptability and generalizability of
the trained model are improved through
imitation learning [82]. It boosts learning
efficiency. It can be used in conjunction
with other learning mechanisms [83].

Demonstration data or a means of obtaining
a supervised signal of desired behavior are

necessary for imitation learning [82].
Obtaining such data is challenging for many
applications or even impossible. The quality

of the demonstrator will limit the
performance of the agent [83].

Parallel learning Parallel learning allows the agent to learn
faster [93]. It makes the agent generalize

the learned model easier [87].

Parallel learning requires using many CPU
cores that have high computing power [87].

It is harder to implement and debug.

Table 2.3: Advantages and disadvantages of the approach used to reduce the Deep Reinforcement
learning (DRL) computation time.

2.1.3 Graph theory, matrix approach, and game theory

Graph theory and the matrix approach represent a task, including the environment and

the agents, as a graph (i.e., tree) or in a matrix shape [94]. These ways of representing a task

are interesting because they give a unified formalism for many different applications. Graph

theory has been utilized, for example, to represent the relationships between the main elements

of collaborative workspaces within the anthropocentric paradigm for HRC developed in [95].

Game theory is originally a branch of applied mathematics that provides a model for

analyzing games (i.e., situations) in which players (i.e., agents) make interdependent decisions,

whether they are collaborating or competing [96]. The game theory uses either the graph

theory or the matrix approach to represent the task. Game theory investigates the interactions

between players, while graph theory and matrix approach focus on the large-scale topology of

an interaction network.

Game theory methods in DM processes have only recently been exploited. They can model

most of the tasks performed by a group of agents (players) in collaboration or competition,

whether the choice of actions is simultaneous or sequential. In the case where the choice of

actions is simultaneous, the task is represented using the normal form, also called matrix

form modeling [97]. When the choice of actions is sequential, the task is represented by the
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extensive form, also known as tree form modeling [98]. Both representation ways are presented

in Figure 2.2. Game theory can be helpful for tasks where agents have complete knowledge of

the environment and other agents (these “games” are called perfect information games). It can

still manage when agents do not have all the information (these “games” are called imperfect

information games). This signifies that game theory can deal with uncertainties and a lack of

information.

The game theory methods have been used in different HRC applications, for instance, in

analyzing and detecting the human agent behavior to adapt the robot one to it [99,100]. This

led to a better collaboration performance. Game theory has also been utilized in HRC in mutual

adaptation to achieve industrial assembly scenarios [101].

Figure 2.2: Task representation ways in game theory. (A) Normal form. (B) Extensive form.

2.1.4 Analytic Hierarchy Process

Other classification-based DM methods represent the task, the agents, and their actions

as a scheme, such as the Analytic Hierarchy Process (AHP). It is a classification process that

orders the task hierarchically, with the objective set coming first, then the metrics at the next

level, and finally the solutions (or actions) at the lowest level [102]. Figure 2.3 presents an

AHP classification. This method is commonly utilized for applications such as for a robot that

performs an assembly task while ensuring the safety of the human agents [103].

2.1.5 Optimization methods

The optimization methods have been utilized in some HRC research as DM methods. Among

them are the metaheuristic optimization algorithms (or metaheuristics) and the Response

Surface Methodology (RSM).

A metaheuristic is a high-level, problem-independent algorithmic framework that provides

guidelines for finding a sufficiently good solution to an optimization problem, particularly

with incomplete information, imperfect information, or limited computational capacity [109].

Even though there are many others, the most famous instances of metaheuristics include
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Figure 2.3: Example of an AHP classification.

Optimization
method

Advantages Disadvantages

Metaheuristics For large or complex problems, metaheuristics
are often superior alternatives to more

traditional (exact) approaches [104]. They
often offer a better trade-off between solution
quality and computation time. Metaheuristics
are more flexible than exact methods because
they do not restrict the formulation of the

optimization problem (i.e., requiring constraints
or objective functions) [105].

Because of their flexibility, metaheuristics
require significant problem-specific adaptation

in order to perform well [105].

Response
Surface

Methodology
(RSM)

RSM reduces the number of trials, which saves
time and cost while determining the interaction

between the independent variables and
modeling the system mathematically [106].

The experimental data are fitted to a
second-order polynomial model. It is incorrect
to assume that all curvature-based systems can
be modeled using a second-order polynomial

model [107]. Additionally, it is imperative to do
absolute experimental validation of the model’s

estimated values [108].

Table 2.4: Advantages and disadvantages of the optimization DM techniques.

genetic/evolutionary algorithms, neighborhood search, bee algorithms, and ant colony optimiza-

tion [105]. In contrast to exact methods, which ensure that the best answer will be discovered

in a limited (albeit frequently impossible) amount of time, metaheuristics do not. Consequently,

they are created to find a “good enough” answer in a “fast enough” computation time [105].

As a result, they are immune to the combinatorial explosion, a phenomenon in which the

complexity of the problem has an exponential effect on the computation time required to find

the optimal solution [109]. For example, the bee algorithm and the neighborhood search among

metaheuristics were used to consider the robot selection and assignment within a HRC in

industrial assembly lines [110,111].

The goal of the RSM is to design a suitable functional relationship (i.e., response surface)

between the input variables and the response of interest (i.e., the desired output). Although the

exact function is uncertain, a low-degree polynomial model can provide an approximation [112].

For instance, such a method has been used to do facial recognition of a human interacting
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with a robot by aligning the contour model of their face with their actual face [113]. RSM can

also enable the robot to adjust its movement when achieving a task in collaboration with a

human agent by learning through human guidance [114]. Table 2.4 presents the advantages and

disadvantages of optimization techniques.

Figure 2.4: The three principal categories of ensemble learning techniques. (A) Bagging
ensemble. (B) Stacking ensemble. (C) Boosting ensemble.

DM method Advantages Disadvantages

Probabilistic methods They are generalizable because they can adapt

to changes since they consider uncertainties, lack

of knowledge, and risk evaluation [115].

Their computation time is long, and it is

complicated to interpret their results [115].

Deep learning They can analyze and learn massive amounts of

data in a supervised or unsupervised way and

learn how to interact with the environment [76].

They require a lot of data for training, the

learning is slow, and the result is not always

guaranteed [76].

Graph theory It is an intuitive technique whose results are easy

to understand and interpret. It can be used in

combination with another DM method [116].

It is unstable because a small change in the data

leads to a big change in the graph (tree)

structure [116].

Game theory It can deal with uncertainties and lack of

information about the environment and the

other agents’ actions [98].

The protocols for interaction should be precisely

defined, whereas, in the real world, they are

often ambiguous for multi-human interactions. It

is impossible to generalize the solution since it

depends on the task and the interaction between

the agents [98].

Analysis Hierarchy

Process (AHP)

Pairwise comparisons make the agents able to

compare alternatives relatively easily [117].

In some cases, some irregularities might appear

for the alternatives estimation since this strategy

is based on pairwise comparisons [102].

Optimization methods Optimization methods reduce the time of

collecting the data [118]. They can adapt to new

situations when the environment is constantly

changing, as is the case for many real

applications.

Since the optimization solution is global and

there is frequently more than one reason for an

unexpected output or outcome, it is more

challenging to settle a good model and

debug [119].

Ensemble learning It is a robust DM method with a reduced

computation time compared to classical learning

methods [120].

It is complex to set up because it has a lot of

parameters, classifiers, and training ensembles to

adjust [120].

Table 2.5: Advantages and disadvantages of DM methods.
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2.1.6 Ensemble learning

Ensemble learning is a general meta-approach to machine learning that aims to improve

predictive performance by mixing the predictions from various models [121]. Three techniques

rule the field of ensemble learning, even though there are an apparently infinite amount of

ensembles you can create for your predictive modeling [122]. So much so that it is a topic of

study that has given rise to numerous more specialized approaches. Bagging, stacking, and

boosting are the three primary categories of ensemble learning techniques. Each technique main

principles are [121]:

• Bagging entails averaging the predictions from many decision trees fitted to various samples

of the same dataset.

• Stacking implies fitting numerous different model types on the same data while using a

separate model to learn how to combine the predictions optimally.

• Boosting includes sequentially adding ensemble members that correct previous models’

predictions and generate a weighted average of the predictions.

Figure 2.4 presents the principle difference between the main three categories of ensemble

learning techniques. Ensemble learning is mainly utilized in HRC to make the robot learns

to collaborate from human demonstrations. For example, a robot learned to write Chinese

characters by imitating a human while writing [123]. In [124], a robot learns new words by

playing with human agents in the “name game”: one agent says a word that belongs to a theme

(e.g., animals), and the next agent has to find another word that belongs to the same theme,

and that begins with the last letter of the previous word.

2.2 Decision-making strategies

The DM strategy is the policy of choosing actions based on the value of their reward

calculated by the reward function (or utility function). This section presents the most used

strategies for multi-criteria DM in HRC as well as some of their application areas. Table 2.6

presents the advantages and limitations of each strategy and some usage examples within HRC.

Theoretically, any strategy can be associated with any DM method. However, practically, only

most of the strategies can be coupled to any DM method, whereas some are exclusively used in

combination with a specific DM method. Let’s define the most well-known strategies:

• Dominance: All the actions whose rewards are dominated by others are eliminated. This

strategy is the most used one in DM processes [98]. It can be coupled with any DM

method.

• Minimax (or minmax): Agents try to either lower their own maximum losses or lower
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the maximum reward that the other agents will receive [125]. This strategy has been

associated with many DM methods such as Game theory and DL methods.

• Maximin (or maxmin): It tries to maximize each agent’s gain when the others try to do

everything to minimize their rewards [98]. This strategy has been associated with many

DM methods such as Game theory, MDP, and DRL.

• Pareto optimality: An action profile is Pareto optimal if we cannot change it without

penalizing at least one agent [98]. This strategy is mainly used in Game theory.

• Nash Equilibrium (NE): Each agent responds to the others in the best possible way [126].

The best response is the best actions an agent can choose, whatever others have done.

This is the main strategy used in Game theory.

• Stackelberg duopoly model: The agents decide sequentially, one agent (the leader) makes

their decision first, and all other agents (followers) decide after. The optimal action of

the leader will be the one that maximizes its own reward and minimizes the follower’s

rewards [127]. This means that the leader always has the biggest reward. This strategy is

primarily used in Game theory.

• ELECTRE (Elimination EtChoix Traduisant la REalité): It was initially used to eliminate

the unacceptable alternatives in the real test. Then it was improved to allow the agent to

select the best choice with the most benefits and the least conflicts while considering the

performance metrics [102]. Regarding outranking the alternatives based on prioritizing

the choices among the performance metrics, the ELECTRE strategy performs well [128].

It has been coupled with probabilistic DM methods.

• PROMETHEE (Preference Ranking Organization METHods for Enrichment Evaluations):

They are also outranking strategies such as ELECTRE. Still, they differ in the way of

calculating alternative ranks, i.e., the alternative rank is computed through a positive and

a negative outranking flow for each alternative [129]. Those strategies were introduced to

overcome one of the limitations of ELECTRE by identifying the alternatives’ strengths

and weaknesses [117].

• Lexicographical order: It is based on a straightforward ranking of the actions by priority.

A choice alternative is superior to another alternative if and only if it is better than the

other alternative in the most crucial performance metric on which the two alternatives

vary [130]. In other words, the lexicographic choice rule does not permit trade-offs between

the different performance metrics if there is a strict preference. For example, let’s consider

the scenario where precision is prioritized over speed. A speed difference cannot make

up for a precision difference in that situation. The lexicographic decision rule selects the

action with the highest precision regardless of speed. This strategy has been used with
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probabilistic DM methods and tree structures.

• Consensus: This strategy is used when all agents have to make the same decision since it

considers the observations and decisions made by each agent and gives a general decision

that all agents will apply [131]. The selected decision is the one that all members can

feel comfortable with, even if they are not unanimous about it. The consensus is usually

coupled with probabilistic DM methods such as Bayesian optimization.

• Multi-Attribute Utility (MAU) models or function: A utility (or reward) is attributed to

each action by evaluating it with more than one performance metric [132]. Then, the best

action with the higher reward is selected (such as with the dominance strategy). MAU

can be utilized with probabilistic DM methods.

DM strategy Advantages Disadvantages Example of HRC applications

Dominance It is a very intuitive strategy

that usually gives a solution

for interactions with strict

dominance [98].

It cannot deal with a situation

with more than one optimal

choice [98].

Researchers used dominance

strategy to assess the human’s

confidence in a robot in [133].

Maximin It guarantees that the agents

choose the actions with the

highest reward in the

worst-case scenario [98].

If the current scenario is not the

worst-case scenario, the agents’

chosen actions may not be the

best [98].

The maximin strategy ensured

human safety within the robot’s

motion planning when sharing

their workspaces [134].

Minimax Minimax is a beneficial DM

strategy for reducing the risks

taken by an agent by

promoting an exhaustive

evaluation of the search space

while considering all the

alternatives [125].

Applying the minimax strategy to

complex tasks (i.e., with a large

tree and a huge branching factor)

results in decreased performance

and efficiency since evaluating

unnecessary nodes or branches

slow down the process of finding

solutions [125].

The minimax strategy is used to

train a generative adversarial

network to recognize human facial

emotions to help the robot interact

with the human agent [135].

Pareto

optimality

This strategy ensures that the

agent chooses actions that

maximize their own

reward [98].

If the order in which agents make

their decisions changes, the actions

they choose will also change since

the actions with the highest

rewards will also change [98].

It is used in disassembly and

remanufacturing tasks [136].

Nash

Equilibrium

(NE)

The NE strategy ensures that

all agents choose the optimal

actions, considering that all

agents seek to maximize their

reward [98].

It does not guarantee the

uniqueness of the solution, i.e.,

most interactions will typically

have more than one NE. This

strategy may occasionally provide

solutions that most players

disagree on (e.g., in the prisoner’s

dilemma game) [98].

A NE strategy ensures human

safety in a nearby environment

during a pick-and-place task [137].

Stackelberg

duopoly model

This strategy helps both

agents to make the optimal

choice [127].

This strategy is only formulated

for the case where two agents

interact and cannot deal with a

multi-agent interaction case [127].

This strategy is used in a

collaborative scenario between a

human and a car to predict the

driver’s behavior in a specific

scenario [138] such as the driver’s

steering behavior in response to a

collision avoidance control [139].
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ELECTRE They are powerful to outrank

the alternatives based on the

performance metrics [128].

They are time-consuming [102].

ELECTRE strategies prevent the

direct identification of the

alternatives’ strengths and

weaknesses [117].

ELECTRE strategy was used to

perform a preference outranking

analysis of the four available HRC

configurations in a real automotive

industry application to identify the

configuration that best exploits

the potential of HRC [140].

PROMETHEE They can identify and consider

the alternatives’ strengths and

weaknesses in the

decision [117].

They require the assignment of

weight values but do not provide a

methodology that assigns

them [117].

A robot used a PROMETHEE

strategy to target the right

components to disassemble during

the disassembly process of an

end-of-life automobile by a

human-robot collaborative

team [141].

Lexicographical

order

Lexicographic order is one of

the most straightforward

choice strategies in DM [130].

A preference among the

performance metrics should be

defined [130].

This strategy is used to classify

the primitive features of human

multimodal data (e.g., videos,

motion data, applied force, etc.)

to enable robots to learn how to

perform object manipulation

actions based on human

manipulation data [142].

Consensus It considers all the data

observed by all the agents to

make an optimal general

decision [143].

The agents cannot make different

decisions [143].

The consensus strategy is utilized

for making a robot initiate a

conversation with the human it

collaborates with [144].

Multi-

Attribute

Utility (MAU)

models

MAU can make decisions

taking into account

multi-performance parameters,

agents’ preferences, and

uncertainty [132].

This strategy is hardly applicable

in the case of a unique

performance metric to

optimize [132]. A huge amount of

inputs is essential at each process

step to accurately record the

agents’ preferences [117].

Robots use the MAU strategy to

perform motion planning in human

proximity to reach a goal position

while ensuring human safety by

avoiding collisions with them [145].

Table 2.6: Advantages and disadvantages of DM strategies with an example of their applications
within HRC.

2.3 Utility or reward functions

The utility is a reward calculated by the utility function (or the reward function) to express

the value of an action. Thanks to these utilities, the DM strategy can choose the right actions.

One possibility to increase the performance of the collaboration is to act on the reward function

by considering performance metrics. This possibility is the most used in the literature. The

reward function is designed specifically for a particular problem. It evaluates the action with

respect to the desired goal to be achieved. Most contributions in the literature focus on defining

this reward function in a new way to optimize collaboration.

Some previous works, known as leader-follower systems [11], considered task accomplishment

(and no performance metrics) in their utility functions because they focused on complex task

accomplishment. Their decision process is focused on choosing the actions that increase the

robot’s dexterity to accomplish the task without considering how the collaboration is done (i.e.,
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the performance metrics). For example, in [17], a human-robot collaborative team was carrying

a table to move it from one room to another. The goal was to ensure mutual adaptation between

the agents by having the human also adapt to the robot. Another relevant example is [146],

where robots influence humans to change the pre-defined leader-follower agents to rescue more

people when a plane or ship crashes into the sea. None of the performance metrics in Table 1.1

is considered in this type of work.

On the other hand, other works deal with maximizing the collaboration performance by

promoting mutual adaptation [147,148] or reconsidering the task allocation [149]. They, then,

include performance metrics (see Table 1.1). In these works, they only consider one or two

unchangeable performance metrics for the HRC evaluation in their utility function: postural

or ergonomic optimization [150, 151], time consumption [152], trajectory optimization [153],

cognitive aspects [154], and reduction of the number of human errors [155].

However, they considered that the performance metrics are not changeable without significant

changes in their framework. A relevant example is [156] where, by changing the task allocation,

the authors make the robot respect the real-time duration of the assembly process while following

the necessary order to assemble the parts. In this case, they considered one metric (the time to

completion) since respecting the part’s assembly order is a constraint to accomplish the task.

However, this time metric cannot be replaced by another (e.g., effort or velocity) using this

framework.

To solve this problem, we introduce in Chapter 3 a framework that integrates an unrestricted

number of changeable performance metrics. The main contribution of this framework is that it

considers an unrestricted number of performance metrics that can change from one collaboration

to another.

2.4 Conclusion

In this chapter, we focused on introducing the DM process of the robot since the goal of the

thesis is to optimize the HRC by improving it. We explained that the DM process comprises

three parts: (i) a DM method, which represents the relationship between the agents, the actions,

the environment, and the task, (ii) a DM strategy which is the policy of choosing actions based

on the value of their reward calculated by the reward function, and (iii) a reward function (or

utility function) which calculates a reward for each action. We introduced the most popular

DM methods, strategy, and reward functions used for HRC in the state-of-the-art.

In Chapter 3, we present our framework that can improve the HRC while considering different

performance metrics. It can deal with the change of the considered metrics because we isolate

the impact of the performance metrics in the utility function (i.e., the reward function). Then,

there is no need to change the way the task is formalized. These metrics are considered regardless
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of human behavior. To this end, we split the utility function into three parts: the first is for

optimizing the metrics, the second is for dealing with the task constraints, and the third is for

considering the robots’ physical abilities and ameliorating their manipulation dexterity.
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Decision-making framework
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Chapter 3

General framework for optimizing the

human-robot collaboration

decision-making process by changing

performance metrics
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In the previous chapter, we presented the Decision-Making (DM) methods, DM strategies

and reward functions (or utility functions) used within Human-Robot Collaboration (HRC).

In this chapter, we introduce our new DM framework in the context of HRC. State-of-the-art

techniques consider the HRC as an optimization problem in which the utility function (the name

used in game theory), also called the reward function in reinforcement learning, is defined to

accomplish the task regardless of how well the interaction is performed. When the performance

metrics are considered, they cannot be easily changed within the same framework.
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In contrast, our DM framework can easily handle the change of the performance metrics from

one case scenario to another. Our method treats HRC as a constrained optimization problem

where the utility function (or reward function) is split into three main parts:

• A set of rewards that evaluate the collaboration’s performance. This is the only part that

is modified when changing the performance metrics. It gives control over the way the

interaction unfolds, and it also guarantees the adaptation of the robot’s actions to the

human ones in real-time.

• A set of constraints that define how to accomplish the task.

• A set that regroups the robots’ physical abilities.

Accordingly, the utility function (or reward function) can be designed to ameliorate the robot’s

manipulation dexterity. We start this chapter by introducing the motivation and the advantages

of having such a framework. Then, we position our work compared to the state-of-the-art.

Finally, we explain our formalization in detail.

3.1 Motivation

Nowadays, HRC is a fast-growing sector in the robotics domain. HRC aims to make everyday

human tasks easier. It is based on the exchange of information between humans and robots

sharing a common environment to achieve a task as teammates with a common goal [28]. HRC

applications can have social and/or physical benefits for humans [11].

As explained in Chapter 2, robots can adapt to humans in different situations thanks to its

DM process that is usually modeled in computer science using a DM method with a strategy and

a utility function [42]. The DM method models the whole situation (including the environment,

the actions, the agents, the task restrictions, etc.). The strategy defines the policy of choosing

actions based on the value of their reward. The utility function (i.e., reward function) evaluates

each action for each alternative by attributing a reward to it. As shown in Section 2.3, a

possibility to improve the HRC performance is to act on the reward function by considering

performances metrics (cf. Table 1.1).

In this chapter, we optimize and quantitatively assess the collaboration between robots and

humans based on the resulting impact of some changeable performance metrics on human agents.

Hence, an optimized collaboration aims to bring a benefit to humans, such as getting the task

done faster or reducing the effort of human agents. However, an unoptimized collaboration will

bring nothing to humans or, on the contrary, will represent a nuisance, such as slowing them

down or overloading them, even if the task is finally accomplished. The main contribution of

this chapter is that the proposed framework allows for optimizing the performance, based on

some changeable metrics, of the collaboration between one or more humans and one or more
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robots. Contrary to previous works, our framework allows us to easily change the performance

metrics without changing the whole way the task is formalized since we isolate the impact of

the metrics in the utility function.

This contribution’s benefit is to increase the performance of the collaboration with the

possibility of improving or not the robot’s manipulation dexterity. This is important in relevant

practical cases, for instance, when using social robots that have great limitations (e.g., slowness

in their movements and/or reduced dexterity) [27], and it is not easy or even possible to

ameliorate their abilities drastically. Therefore, our work provides an interesting solution to

enhance collaboration performance with such limited robots.

Our framework uses the state-of-the-art DM process composed of a DM method, a strategy,

and a utility function. We divide the utility function (or reward function) into three main parts:

the collaboration performance evaluated by a reward according to one or several performance

metrics, the task accomplishment, which is considered as a constraint since we only deal with

achievable tasks, and a set that regroups the robot’s physical abilities. In the two following

sections, we briefly recall how utility functions are used in the literature and mention our

contributions with respect to them.

3.2 Utility or reward functions

As mentioned in Chapter 2, the utility is a reward calculated by the utility function (or

reward function) to express the value of an action. Thanks to these utilities, the DM strategy

can choose the right actions. Some previous works in the literature only considered task

accomplishment (and no performance metrics) in their utility functions because their focus

was on complex task accomplishment. For example, in [17], a human-robot collaborative team

was carrying a table to move it from one room to another. The goal was to ensure mutual

adaptation between the agents by having the human also adapt to the robot. In this type of

work, none of the performance metrics in Table 1.1 is considered.

More recent works include performance metrics (see Table 1.1). However, they considered

that they are not changeable without significant changes in their framework. A relevant example

is [156] where, by changing the task allocation, the authors make the robot respect the real-time

duration of the assembly process while following the necessary order to assemble the parts.

In this case, they considered one metric (the time to completion) since respecting the part’s

assembly order is a constraint to accomplish the task. However, this time metric cannot be

replaced by another (e.g., effort or velocity) using this framework.
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3.3 Contributions

Unlike the utility functions used in the state-of-the-art works, we consider a changeable

unrestricted number of performance metrics (from Table 1.1) that are usually optimized no

matter how the human is behaving. To summarize our contributions, we propose a framework

that allows us to:

• easily change the performance metrics from one scenario to another without changing

anything in our formalization except the part in the utility function related to the metrics,

and

• increase the performance of the collaboration with the possibility of improving or not the

robot’s manipulation dexterity since we isolate that part in the reward function.

In the following section, we define the problem formalization and present the utility function,

which optimizes the performance metrics and aims to accomplish the task as a constraint.

3.4 Formalization

A HRC1 consists of a global environment {E} and a task T . The environment state Ek at

each iteration k (with k ∈ [1, kf ], where kf is the final iteration of the task) comprises objects,

and a group of n agents (humans and robots), each of them can carry out a finite set of actions.

Ek changes according to the actions chosen by the agents. The global environment {E} is the

set of changes in the environment state at each iteration.

{E} = {E1, E2, ..., Ek, ..., Ekf} (3.1)

Since the possible actions may change at each iteration, we define {A} as the global set of

feasible actions for each iteration k: {A}k.

{A} = {{A}1, {A}2, ..., {A}k, ..., {A}kf} (3.2)

The set {A}k contains a set of feasible actions for each agent i (with i ∈ [1, n]) at iteration k

denoted by {Ai}k.
{A}k = {{A1}k, ..., {Ai}k, ..., {An}k} (3.3)

Ak
i,a is the ath feasible action of agent i where a ∈ [1, l] and l is the number of feasible actions of

the agent i at time k.

{Ai}k = {Ak
i,1, ..., A

k
i,a, ..., A

k
i,l} (3.4)

1We denote functions by lower case letters in bold, sets and subsets between braces with upper case letters in
bold, indexes by lower case letters, parameters by upper case letters, and vectors (i.e., profiles) by letters in bold
topped by an arrow between parenthesis.
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At each iteration, an action profile (A⃗)k groups the actions chosen by each agent i denoted by

Ak
i ⊂ {Ai}k.

(A⃗)k = (Ak
1, ..., A

k
i , ..., A

k
n) (3.5)

The optimal action profile (A⃗)kopt at iteration k is computed through the DM function dM,S as

presented in (3.6). dM,S relies on the DM method M , the DM strategy S, and the utility profile

(U⃗)kA that contains all the utilities for all possible actions {A}k at iteration k. The DM method

M takes into account the constraints related to the task, such as the order in which the agents

act, i.e., sequentially or simultaneously. The DM strategy S defines the way the agents must

choose the actions according to their utilities contained in (U⃗)kA, as presented in Figure 3.1.

(A⃗)kopt = dM,S

(
(U⃗)kA

)
(3.6)

The utility profile (U⃗)kA is computed by the utility function fu based on different sets including:

(i) the set of performance metrics {M} (cf. Table 3.1), (ii) the set of constraints {G} to be

respected in order to make the task T progress for accomplishing it, (iii) {A} the set that

regroups the robots physical abilities, (iv) {R} the reward of each action in the profile action

which is calculated according to the task and the metrics, and (v) {ϵ} a set of weighting

coefficients (between 0 and 1) used to determine the importance of each metric (e.g., favoring

one metric over the others, especially when it is in opposition to others). We get:

(U⃗)kA = fu({M}, {G}, {A}, {R}, {ϵ}) = (Uk
A1
, ..., Uk

Ai
, ..., Uk

An
) (3.7)

Let us discuss how one can make changes to the different elements involved in (3.7). To only

change the scenario of the collaboration by changing the performance metrics {M} in fu, we

first need to change the value of the metrics {M}, and the value of the reward {R} of each

action, and afterward recalculate the utilities (U⃗)kA. To only modify the agent’s actions, the

utilities (U⃗)kA should be recalculated for the new actions. To change the robots involved in the

collaboration, the robots’ abilities {A} should be adjusted. To change the task, we will need

to modify the constraints {G}, which define the task by setting the conditions that allow the

agent to only choose among the actions which permit to make the task progress. It will then be

necessary to recalculate the utilities (U⃗)kA. We can, of course, combine several modifications

(e.g., changing the performance metrics and the task) by making the appropriate adaptations

(e.g., first modifying the metrics {M}, the rewards {R}, and the task constraints {G}, and
afterward recalculating the utilities (U⃗)kA).

3.5 Performance metrics

As long as a metric can be formulated mathematically or at least can be measured during

the execution of the task and expressed as a condition to calculate the task rewards, it can
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Figure 3.1: Block diagram of our formalization of the DM process used to calculate the optimal
action profile (A⃗)kopt at iteration k.

be considered in choosing the actions through the performance metrics {M}. Some of the

performance metrics that we can consider are presented in Table 3.1. Table 3.1 is a simplified

version of Table 1.1 presented in Chapter 1.

Task Navigation Perception Management Manipulation Social Common
metrics that can
be used for all
task types

Performance
metrics

Failure rate,
accuracy,

ergonomy or
posture, time
to completion,
and rapidity

Velocity,
accuracy,
time to

completion,
effectiveness,
and number
of errors

Time delivery,
time request,
number of
human and
robot errors,
trust, and

cognitive load

Positional
accuracy and
repeatability,

velocity,
dexterity, time
to completion,
and effort or

force

Persuasiveness,
engagement in

social
characteristics,
trust, and
compliance

Time to
completion,
number of
human and
robot errors,
autonomy,

cognitive load,
and effectiveness

Table 3.1: Some metrics considered for the evaluation of HRC classified based on the task
types [10–12].

3.6 Example of a classical HRC application treated by

our framework

To illustrate how (3.6) and (3.7) can be settled, let us consider the example of a collaborative

team composed of a human and a robot, each holding an edge of a gutter on which there is a

ball [9]. Their goal is to position the ball, for instance, in the center of the gutter (cf. Figure 3.2).

Note that this is just an example and that all the elements such as action sets, constraint sets,

DM method, DM strategy, and performance metrics can be replaced within our framework. Our

solution using our formalization for such a task can be as follows:
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• Agents: Agent 1 is the human, and agent 2 is the robot. Both agents are making decisions

simultaneously.

• Human actions {A1}k: They are the angles of inclination of the gutter. The actions are

continuous. The set of human actions remains the same for all the iterations ({A1}k =
{A1}).

• Robot actions {A2}k: They are angles of inclination of the gutter by the robot’s end-

effector. The DM function will provide the correspondent joint values needed to reach the

desired position by the end-effector. The actions are continuous (since it is a continuous

control task). The set of robot actions remains the same for all iterations ({A2}k = {A2}).

• Environment: The environment contains the human hand position, the robot’s end-effector

position, and Cb is the position of the center of the ball. The environment changes at each

iteration according to the agents’ actions.

• Constraints {G}: The inclination angles of the gutter should be, for instance, between

[−30◦, 30◦]; other values will be penalized. This is because even though both agents (the

robot and the human) can incline the gutter more, if they do so, the ball will move too

fast, and the task will no longer be achievable.

• Performance metrics {M}: Time to completion and human posture. Human posture is

measured by ISO standards that define some uncomfortable work postures [157]. These

uncomfortable postures (or positions) will lead, for example, to find that when the human

inclines the gutter with an angle out of the interval [−20◦, 20◦], it is getting painful for

them.

• Rewards {R}: They will be calculated by the following equation: −
∥∥Cb − Cg

∥∥ ∗ λ. Where

Cb is the position of the center of the ball, Cg is the position of the center of the gutter

(the desired position), and λ is a fixed gain for a case scenario. λ allows to privileged an

action according to the performance metrics ({M}) and the constraints ({G}).

• Weighting coefficients {ϵ}: It is equal to 1 for both performance metrics.

• Robot’s abilities {A}: They should be equal to the robot’s joints limits, limiting the

attainable inclination angles (the robot’s workspace). The importance of optimizing the

robot’s motion dexterity is to make the robot able to take full advantage of its physical

abilities. Otherwise, it will not be able to perform the action (the desired angle of

inclination), even if this action is comprised within its workspace.

• DM method M : It can be, for instance, a reinforcement learning process that is based on

trial and error learning. The agent 2 (the robot which learns) in state sk makes an action

A2,a which changes the state to sk+1. The observation the agent got from the environment
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Ek+1 describes the changes that happened by moving from state sk to sk+1. The reward

R(sk, A2,a) evaluates the taken action A2,a (which leads to the new state sk+1) with respect

to the desired learning goal. The state sk is made up of Cb, Cg, the position of the robot’s

end-effector, and the human hand position. The learning procedure of all reinforcement

learning algorithms consists of learning the value that is attributed to the state V (sk)

defined below.

• DM strategy S: It can be, for example, the dominance strategy. Once the V (sk) are learned

for all possible states, the optimal actions can be chosen. Most of the reinforcement learning

algorithms are based on the Bellman equation for choosing the optimal actions [158]:

V (sk) = max
A2,a

(R(sk, A2,a) + γV (sk+1)) (3.8)

γ is the discount factor that determines how much agent 2 cares about rewards in the

distant future relative to those in the immediate future. max
A2,a

is the strategy S for choosing

the action (i.e., dominance strategy).

Figure 3.2: A human-robot collaborative team. Each agent holds an edge of a gutter on which
there is a ball [9]. They try, for instance, to position the ball in the center of the gutter.

As we can see from the previous example, the DM method manages the way agents act

(simultaneously or sequentially) as well as the different types of actions (continuous or discrete).

It is also necessary to ensure that the DM strategy can handle the nature of the actions (discrete

or continuous) and how they are chosen (sequentially or simultaneously). As our framework

allows us to easily change the DM method and strategy, we just have to select them according

to the nature of the actions and how they are chosen. In this example, the robot’s manipulation

dexterity is improved since we enhance the action made by the robot. This consists of defining

how the robot should move its arm to achieve the task while optimizing the performance metrics.
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3.7 Conclusion

In the previous chapter, we presented the most used DM methods in the literature, such as

probabilistic methods, deep learning, and game theory. We also introduced the most popular

DM strategies, such as dominance, minimax, maximin, and Nash Equilibrium (NE). Then, we

showed that the reward functions utilized in the state-of-the-art DM frameworks do not easily

consider the change of the performance metrics used to optimize the HRC.

In this chapter, we introduced our new DM framework that can handle the change of the

performance metrics from one case scenario to another. Our framework solves the difficulty of

changing the performance metrics within the same framework without redefining the whole way

the task is formalized. It can increase the performance of the collaboration with the possibility

of improving or not the robot’s manipulation dexterity since we isolate that part in the reward

function.

In the next chapter, we apply our framework to make a human-robot collaborative team

achieve an “assembly task” (i.e., a game based on a construction kit) non-intuitive (i.e., it

is complicated to know which piece to put where). Since we utilized the Nao robot, which

has great physical limitations, we are enhancing the HRC without having to increase Nao’s

manipulation dexterity (i.e., through improving the perception, the trajectory planning, or

the low-level control). In the following chapter, the robot’s DM process is based on NE and

Perfect-Information Extensive Form (PIEF) from game theory. Thus, the robot can deal with

collaborative interactions considering different performance metrics, such as optimizing the

time to complete the task, considering the probability of human errors, etc. We chose PIEF

from game theory as DM method because of its sequential nature, which is suitable for HRC

applications and, more specifically, the “assembly task” we want to make the collaborative team

able to achieve. We selected NE as DM strategy because it ensures optimality regarding the

choice of actions, which is what we seek to guarantee.

The proposed framework in this chapter and the tests conducted in real and simulation

in the next chapter to assess our framework when it is applied to the “assembly task” were

published in an international journal under the reference: Hani Daniel Zakaria, M., Lengagne,

S., Corrales Ramón, J. A., & Mezouar, Y. (2021). General Framework for the Optimization

of the Human-Robot Collaboration Decision-Making Process Through the Ability to Change

Performance Metrics. Frontiers in robotics and AI, 8, 736644. https://doi.org/10.3389/

frobt.2021.736644.
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In the previous chapter, we introduced our new Decision-Making (DM) framework, which

can be used to optimize the Human-Robot Collaboration (HRC) by ameliorating the robot’s

DM process. This framework can handle the performance metrics change from one case scenario

to another. It overcomes the challenge of modifying the performance metrics within the same

framework without redefining the whole way the task is formalized.

In this chapter, we introduce the DM method and the DM strategy that we used to make

a human-robot collaborative team able to perform an “assembly task”. We conduct real and

simulated tests to prove the effectiveness of our framework. We test three different utility

function case scenarios in which the reward values change according to the chosen performance

metrics. In the state-of-the-art case scenario, no metric is optimized. In the real experimental

tests, the time to completion metric is optimized. In the simulated tests, we optimize the time

to completion by considering the probability of human errors and the time each agent takes to

make an action.

4.1 Problem statement

We address the problem of the optimization of the HRC DM process through the ability to

change performance metrics. A human-robot collaborative team performs an “assembly task”,

i.e., a game1 that involves placing cubes to build a path between two figurines (cf. Figure 4.1).

The objective is to increase the collaboration performance based on different performance metrics

without having to ameliorate the robot’s manipulation dexterity (since Nao’s physical abilities

are very limited). The difficulty is to be able to change the performance metrics within the same

framework without having to redefine the whole way the task is formalized. In the following

sections, we will detail the components of our framework that we will use to solve this problem.

1Camelot Jr. is a game created by Smart Games: https://www.smartgames.eu/uk/one-player-games/camelot-
jr
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Figure 4.1: Agents solving the Camelot Jr. game. (A) Agents play sequentially: the human
starts to play, and then it is the robot’s turn. (B) This puzzle starts with four cubes to assemble.
(C) The cubes are correctly assembled, and the puzzle is solved (i.e., a path composed by cubes
is created between both figurines).

4.2 Robot’s DM process

In this section, we will explain the DM method and strategy we will use within our framework.

To illustrate our contributions, we define a constant DMmethodM and strategy S. We assume as

DM method the Perfect-Information Extensive Form (PIEF) from the game theory (environment

and actions are known) in which the full flow of the game is displayed in the form of a tree.

Using Nash Equilibrium (NE) as the strategy of the DM process ensures optimality regarding

the choice of actions, which is what we seek to guarantee.

4.2.1 DM method

DM methods are used, as mentioned before, to model the relationship between the task,

the agents accomplishing it, their actions, and their impact on the environment. As presented

in Chapter 2, probabilistic methods, deep learning, and game theory are considered among

the most widespread DM methods. Game theory methods in DM processes have only recently

been exploited. They can model most of the tasks performed by a group of agents (players)

in collaboration or competition, whether the choice of actions is simultaneous (normal form,

also called matrix form modeling [97]) or sequential (extensive form, also known as tree form

modeling [98]).

We choose the game theory as a DM method due to its simplicity and effectiveness in

modeling most interactions between a group of participants and their reactions to each other’s

decisions. We specifically use the extensive form due to its sequential nature, which is suitable

for HRC applications and, more specifically, the one we want to make the collaborative team

able to achieve.
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As DM method M in (3.6) we used the PIEF. Using this method, the agent has all the

information about the actions and decisions of other agents and the environment. A game

(or task or application) in PIEF in game theory is represented mathematically by the tuple

T = ({N}, {A}, {H}, {Z},χ,ρ,σ, {U⃗}) [98], with:

• T represents the game (i.e., the task) as a tree (graph) structure.

• {N} is a set of n agents.

• {A} is a set of actions of all agents for all iterations.

• {H} is a set of non-terminal choice nodes. A non-terminal choice node represents an agent

that chooses the actions to perform.

• {Z} is a set of terminal choice nodes; disjoint from {H}. A terminal choice node represents

the utility values attributed to the actions Ak
i each agent i chose in an alternative (i.e., a

branch of the tree).

• χ: {H} 7→ {A}@H is the action function, which assigns to each choice node H a set of

possible actions {A}@H .

• ρ: {H} 7→ {N} is the agent function, which assigns to each non-terminal choice node an

agent i ∈ {N} who chooses an action in that node.

• σ: {H} × {A} 7→ {H} ∪ {Z} is the successor function, which maps a choice node and an

action to a new choice node or terminal node.

• {U⃗} = {(U⃗)1A, ..., (U⃗)kA, ..., (U⃗)
kf
A } is the global utility profile for all iterations.

We apply this structure to represent the task in the following sections. In our case, since the

number of nodes is small, χ, ρ, and σ are straightforward functions (cf. Figure 4.4).

From a high-level perspective, a perfect-information game in extensive form is simply a tree

(e.g., Figure 4.4) which consists of:

• Non-terminal nodes (squares): each square represents an agent that will choose actions.

• Arrows: each one represents a possible action (there are as many arrows as available

actions {Ai}k for agent i at iteration k).

• Terminal nodes (ellipses): each ellipse represents the utilities calculated for each action

chosen by each agent in an alternative (i.e., a branch of the tree).

Note that this kind of tree is made for all the possible alternatives (considering all the actions

an agent might choose), even if some of them will never happen (the agent will never choose

some of the available actions). In this way, the tree represents all possible reactions of each
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agent to any alternative chosen by the others, even if, in the end, only one of these alternatives

will really happen.

4.2.2 DM strategy

As mentioned in the previous chapters, the DM strategy is the policy of choosing actions

based on the value of their reward calculated by the utility function (i.e., the reward function).

As presented in Chapter 2, the most used strategies for multi-criteria DM coupled with Game

theory in HRC are dominance, Pareto optimality, NE, and Stackelberg duopoly model [98].

We choose the NE as a DM strategy because it makes each agent responds to the others

in the best possible way. The best response is the best actions an agent can choose, whatever

others have done. Applying this strategy leads to having an optimized collaboration, and this is

what we seek to guarantee.

As DM strategy S in (3.6) we used NE. The game T can be divided into subgames T k at

each iteration. In game theory [98], we consider a subgame of T (in PIEF game) rooted at node

H as the restriction of T to the descendants of H. A subgame perfect Nash equilibrium of T is

all action profiles (A⃗)k such that for any subgame T k of T , the restriction of (A⃗)k to T k is a

NE of T k.

NE in pure strategy (game theory) at iteration k is reached when each agent i best responds

to the others (denoted by −i). The Best Response (BR) at k is defined mathematically as:

A∗k
i ∈ BR(Ak

−i) iff ∀Ak
i ∈ {Ak

i }, Uk
A∗

i |A−i
≥ Uk

Ai|A−i
(4.1)

Hence, NE will ultimately be expressed as follows: (A⃗)kopt = (Ak
1, ..., A

k
i , ..., A

k
n) is an optimal

profile of actions following Nash’s equilibrium in pure strategy iff ∀i, Ak
i ∈ BR(Ak

−i).

From a high-level perspective, to ensure that the actions chosen by one agent are following the

NE strategy, it is enough to verify that each agent chooses the actions that have the maximum

possible utilities. The definition of the utility function depends on the task and the performance

metrics we want to optimize in each case scenario. In the next sections, we present all the case

scenarios we suppose to solve the task and the correspondent utility functions.

4.3 The task

We chose to solve Camelot Jr. as a task. To successfully complete this task, all the cubes

must be positioned correctly to build a path between the two figurines (cf. figure 4.1). We have

divided the task completion process into iterations, during which each agent chooses an action

sequentially.
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4.3.1 Experiments context

We make the collaborative team ({N}), composed of a human (h) and the humanoid robot

Nao (r), do a task (T ) that consists in building puzzles. Nao is much slower than the human

(tAr > tAh
) in doing physical tasks (e.g., pick-and-place tasks), and we want to minimize the

total task time ({M}). This slowness depends on the nature of the robot itself (its motor

capacity combined with the use of its integrated camera) and the puzzle’s complexity. The

puzzle is more complex for the robot as the number of cubes to assemble increases. It is quite

different for the human agent; the complexity depends on their “intelligence”, which means that

the puzzle is easier as the human is “intelligent”. By “intelligent”, we mean that the human

can discover rapidly and without making mistakes where the correct position of each cube is.

The advantage of collaborating with the robot is that it knows the solution to the construction

task. Therefore, the robot is always performing well, even if it is slower than the human. The

human agent, however, can make mistakes. The human begins to play, and then, it is the robot’s

turn. The robot will correct the human’s move if this move is wrong. The changes in the robot’s

DM process between the three case scenarios, including all the details we will present in the

following sections, are shown in Figure 4.6.

4.3.2 Assumptions

To illustrate the contributions of our framework, we consider the following assumptions:

• The task is always achievable. We solve the task while optimizing the performance metrics

through the utility function. The optimization of the metrics does not have an impact on

the solvability of the task.

• We limit the number of agents to two: a human (h) and a robot (r). Hence, {N} =

{h, r} =⇒ n = 2.

• We limit agents to choose only one discrete action per iteration (i.e., |Ak
i | = 1) and to

maximize only one metric (time to completion) in the real experiment and two metrics

(time to completion by considering the probability of human errors) in the simulated

experiments.

• The task is performed sequentially through iterations. An iteration k includes the human

making an action, then the robot reacting.

• The agent set of actions and the time the agent takes to make an action are invariable by

iteration.
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4.3.3 The actions

The set of human actions (4.2) and the set of robot actions (4.3) are the same at every

iteration, and each one of them consists of three actions:

• Ah,g ≡ Ar,g: perform the good action (i.e., grasp a free cube and release it at the right

place).

• Ah,w ≡ Ar,w: wait (i.e., the agent does nothing and passes its turn).

• Ah,b: perform the bad action (i.e., the human makes an error: grasping a free cube and

releasing it at the wrong place).

• Ar,c: correct a bad action (i.e., the robot removes the cube from the wrong place).

{Ah}k = {Ah} = {Ah,g, Ah,w, Ah,b} (4.2)

{Ar}k = {Ar} = {Ar,g, Ar,w, Ar,c} (4.3)

4.3.4 Utility calculation

The following equation is the adaptation of (3.7) to the current task. So, the utility of every

available action a for each agent i is calculated as follows:

Uk
Ai,a

= UAi,a
=

(
1

tAi,a

×GAi,a
×RAi,a

)
t (4.4)

with:

• tAi,a
: the duration of action a of agent i,

• t: the total time for an iteration (t =
∑n

i=1 tAi,a
, here having n = 2, therefore t =

tAh,a
+ tAr,a′

),

• GAi,a
: the constraint that ensures the task progression by penalizing the actions which

make the task regress (cf. Table 4.1),

• and RAi,a
: the reward of action a of agent i.

We did not consider improving the robot’s manipulation dexterity {A} within this utility

function because, as mentioned previously, Nao’s physical abilities are very limited.

4.3.5 Strategy of action’s choice

In our formalization, we mentioned that the agents are choosing NE as the DM strategy.

But since the behavior (the DM strategy) of each human is different from one to another, we
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cannot claim that they will follow the NE for choosing their actions. For the robot, however, we

restrict it to choose the actions by using the NE strategy. That is why the robot chooses the

action with the highest utility knowing the one chosen by the human. Note that, in our case

scenarios, the robot reacts to the human’s action since they are doing the task sequentially, and

the human starts.

Action GAi,a
Task progress

Human Ah,g 1 Progression

Ah,w 0 No progression

Ah,b −1 Regression

Robot Ar,g 1 if Ah ̸= Ah,b

−1 otherwise
Progression

Ar,w 0 No progression

Ar,c 1 if Ah = Ah,b

−1 otherwise
Progression

Table 4.1: The value of the constraint of the task accomplishment for each action: making
the task progress (GAi,a

= 1), making no progression (GAi,a
= 0), and making the task regress

(GAi,a
= −1).

4.4 State-of-the-art utility function

In state-of-the-art techniques, there is no optimization of the task. This is equivalent to

always consider: ∀a, i RAi,a
= 1 in our approach (in (4.4)). For each iteration (each agent chooses

an action with a utility), we can represent the task with the tree structure of Figure 4.4.A. We

will refer in the rest of this chapter to this case scenario by using C1.

In this case, using NE, the robot’s reaction to the human action will be as follows: Ar,g if

the human chose Ah,g or Ah,w, and Ar,c if the human chose Ah,b.

4.5 Real experiments with time metric

We conducted tests2 with a group of 20 volunteers. The objectives were to prove that the

framework is applicable to a real task and to check human adaptation to the robot. Two of

those tests are presented as an example in the video available on https://drive.google.com/

drive/folders/1fYcaI7un88hL99Sr5fPtpNQcTLWxiIrL?usp=sharing.

2The experiment protocol was approved by the ethics committee of the Clermont-Auvergne University under
the number: IRB00011540-2020-48
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4.5.1 Experiment procedure

After explaining the game rules to the participants, we asked them to complete two puzzles

to make sure they understood the gameplay. Afterward, we asked each participant to complete

three puzzles, chosen randomly among five, by collaborating with the Nao robot. All these

puzzles are presented in Appendix A in Part IV.

The participant began the game. Then, it was Nao’s turn. It continued until the puzzle was

done. At each time, the participant had 20 s (tAh
) to make an action or to decide to skip their

turn. Nao takes on average 60 s (tAr) to do an action. It was skipping its turn when humans

were well-doing and correcting them when they made an error. Nao did not move the cubes

on its own (for human safety), but it was showing and telling the human which cube should

be moved and where by pointing it. Figure 4.2 illustrates, as an example, the steps of solving

puzzle two by a participant and Nao.

Figure 4.2: Example of the solving steps of puzzle two by a participant and Nao. (A) The
human puts a cube in a wrong position. (B) Nao asks him to remove that cube. (C) The
human puts a cube in a correct position, then the robot does nothing. (D) The human puts
another cube in a correct position, and the puzzle is solved.

4.5.2 Implementation of the conducted experiments

In figure 4.3, we present a block diagram of our implementation of the conducted experiments.

First, the participant finishes their turn. Then, it is the turn of the robot which will be mainly

made up of three parts:

• Perception: Nao’s camera captures the markers; then, using the Aruco library [159], we

can estimate the pose of the cubes. This allows us to compute the puzzle’s state and

identify the human action according to the last observation.

• DM process: The robot chooses its action according to the human’s one. The utility

function calculates a utility for each of the robot’s actions. The robot chooses, based on

the NE strategy, the action that has the highest utility.

• Robot’s action: If the robot passes its turn (Ar,w), it tells the human. In this case, the

robot does not have to make any movement. On the contrary, if the robot corrects the
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human’s action (Ar,c) or helps them by indicating where to place a cube (Ar,g), the robot

will have to speak and move its arm to point out the cube to move.

Figure 4.3: Implementation of the conducted experiments using ROS.

4.5.3 Utility function for optimizing the time to completion

The reward values (4.5) in the utility function (4.4) ensure to maximize the time metric

by penalising the action taken by the robot (the slower agent, i.e., RAi,a
= −1) if the human

(the faster agent denoted by i′) chooses the correct action (denoted by a′). This penalization

will prevent the robot from interfering with the human actions if the human makes the right

decision:

RAi,a
=

{
−1 if GAi,a

> 0 and GAi′,a′
= 1 and tAi′,a′

< tAi,a

1 otherwise
(4.5)

Thus, for each iteration, we can represent the task with the tree structure of Figure 4.4.B.

We will refer in the rest of this chapter to this case scenario using C2. In this case, using NE,

the robot’s reaction to the human action will be as follows: Ar,w if the human chose Ah,g, Ar,g if

the human chose Ah,w, and Ar,c if the human chose Ah,b.
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Figure 4.4: Tree representation of the task based on the utility function in C1 and C2. Notice
that the difference between both figures is the utility value of the action Ar,g of the robot
(1.33 and -1.33). It is because C1 (on the contrary to C2) does not minimize the time, so the
robot continues to make an action even if the robot is slower than the well-performing human.
(A) This tree is obtained by simulating an iteration of the task without optimization (C1).
The utilities (first for human agent and second for robot in green ellipses) are calculated for
tAh

= 20 s, tAr = 60 s and t = 80 s. (B) This tree is obtained by simulating an iteration of the
task optimized by the time metric (C2). The utilities (first for human agent and second for
robot in green ellipses) are calculated for tAh

= 20 s, tAr = 60 s and t = 80 s.

4.5.4 Results

Experiments with humans (presented in Section 4.5.1) were those where the robot used

the utility function optimizing the time metric (case 2 (C2)). It was very difficult to have

enough participants to also test the case where the robot does not optimize any metric (the

state-of-the-art case (C1)). The only change in the procedure of the experiments using C1

will be that even if the human is well-doing, the robot will not pass its turn (Ar,w) but will

perform the good action (Ar,g). Hence, to compare the achieved results of our technique and

the state-of-the-art techniques, we assumed that human actions remain the same in the case C1

as in the case C2, and we merely changed the robot reactions.

We chose to keep human actions unchanged between the two cases to ensure that only the

switching of the utility function (C2 to C1) affects the robot reaction and not the influence of

human behavior. Table 4.2 provides an example of a scenario for solving puzzle two with C2 and

C1 (Figure 4.2). We also calculated in Figure 4.5 the average time and the standard deviation

of the measured times among the experiments (C2) and the deducted times (C1).

In C2, we assumed that if the human does the good action once, they will continue to do it

each time. We notice from Figure 4.5 that C1 works better when the human is not “intelligent”,

i.e., they make lots of errors. That is why, the standard deviation values using C2 are bigger

than those using C1. This is the case for the last three puzzles where the average time using C2

is bigger than using C1. For the first puzzle, however, the average time using C2 is smaller than

using C1, but the standard deviation values using C2 are bigger than using C1. The standard

deviation values of this puzzle (using C1 and C2) are the biggest ones among all puzzles presented

in Figure 4.5. Having big standard deviation values means that this puzzle was harder to solve
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Iteration 1 Iteration 2 Iteration 3 Total time

C1 Human actions Ah,b (20 s) Ah,g (20 s) 160 s

Robot reactions Ar,c (60 s) Ar,g (60 s)

Iteration time 80 s 80 s

C2 Human actions Ah,b (20 s) Ah,g (20 s) Ah,g (20 s) 140 s

Robot reactions Ar,c (60 s) Ar,w (20 s)

Iteration time 80 s 40 s 20 s

Table 4.2: The adaptation of time calculation from C2 to C1 for the resolution of one scenario
of puzzle two.

Figure 4.5: The average time and the standard deviation in seconds of the time taken to do the
task with the state-of-the-art utility function (C1) and the utility function used to optimize the
time to completion (C2), which is our contribution.

for some participants and easier for others. That is why the average time and the standard

deviation values using C2 and C1 do not have the same trend.

On the contrary, C2 performs better when the human is “intelligent”. Therefore, the time

taken to accomplish the task depends on human “intelligence”, that is related to the probability

of human errors and the ratio between the time each agent takes to do an action. Without

taking into account these two additional metrics, we cannot optimally ensure to minimize the

time to completion when the human makes many mistakes.

In the next case (C3), we present a third utility function that takes into account the time

taken by the agents to make an action and optimizes the time to completion by encouraging the

human agent to reduce the number of errors. Each metric has the same weight ϵ = 1 (3.7) since

all these metrics are compatible. It means that optimizing one metric depends on optimizing

the others.
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4.6 Simulated experiments with time and number of

human errors metrics

We use case (C3) to prove that our framework can handle the changes in the performance

metrics from one case scenario to another. In this case (C3), we select between C1 and C2, the

case that minimizes the total time by considering the probability of human errors and the ratio

between the time each agent takes to make an action. The difference between C1 and C2 lies in

the robot reaction when the human agent makes the good action (Ah,g). With C1, the robot

makes the good action (Ar,g), while with C2, the robot decides to wait (Ar,w), to not slow down

the human. Figure 4.6 presents an algorithmic block diagram showing which case the robot will

choose to make an action.

4.6.1 Assumptions on Humans

We did not have enough participants to do real tests, so we chose to do simulated tests.

For this, we simulated the human decision process as a probability distribution among the set

of feasible actions such that : P (Ah,g) = I1, P (Ah,w) = I2, and P (Ah,b) = I3 = 1 − (I1 + I2).

I1, I2, and I3 are variable from one participant to another and 0 < I1 + I2 ≤ 1.

4.6.2 Utility function for optimizing the time to completion while

considering the probability of human errors

Compares to (4.4), only the reward values (RAi,a
) change. The reward values of the utility

function for C3 are calculated by the following function:

RAi,a
=

{
−1 if GAi,a

> 0 and GAi′,a′
= 1 and tC2 < tC1

1 otherwise
(4.6)

Where tC2 < tC1 decides which case (1 or 2) is the best to optimize the total time (cf. Figure 4.6)

and thus reduce the number of human errors. So, if tC2 < tC1 is true, C2 will be faster than

C1, and vice versa. tC is the generic equation for calculating time payoffs tC1 and tC2 (4.7).

It considers the probability that the human agent will perform each feasible action (P (Ai′) =

probability distribution of human actions) which we assume as known, and the time that the

agents will take to make an action. tAi′,a′
is the time required for the other agent i′ (i.e., human)

to make the chosen action a′ and tAi,a
is the time taken by the agent i (i.e., robot) to react by

making the action a. Nc is the number of cubes correctly placed by taking actions a and a′.

C2 did not work well because it was assuming that if the human does the good action

once, they will continue to do it each time. That is why in (4.5) the comparison of the times

(tAi′,a′
< tAi,a

) was not including the probability of the human actions (including probability of
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Figure 4.6: C3 algorithm block diagram.

making errors). In case the human often performs the bad action (e.g., I3 ≥ 0.6), the robot is

encouraged not to wait but to perform the good action (C1), despite its slowness. This is done

to reduce the number of iterations and thus reduce the number of times the human will make a

mistake, as they will have fewer turns to play (i.e., reducing the number of human errors). That

is why in C3, we consider the probability distribution of human actions, including that of doing

the bad action (committing errors) while calculating tc (cf. (4.6)). The robot chooses C1 if the

human will make many errors and C2 in the opposite case.
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tC =

∑l
a′=1 P (Ai′,a′)(tAi′,a′

+ tAi,a
)∑l

a′=1 P (Ai′,a′)Nc

(4.7)

4.6.3 Simulation conditions

A simulated test depends on:

• The values of I1 and I2 (we tested for I1 = (0 : 0.1 : 1) and I2 = (0 : 0.1 : 1) except for

I1 = I2 = 0).

• The ratio between tAh
and tAr (we tested for 1/1, 1/1.5, 1/2, 1/3, 1/4, 1/5).

• The number of cubes required to solve the puzzle (we tested for 2, 3, 4, and 5).

• The number of simulations (we conducted 10000 simulations to calculate the average time

and the standard deviation).

4.6.4 Simulation Results

We illustrate the efficiency of our utility function C3 by showing the improvement in time to

completion and the reduction of the number of human errors obtained while solving the puzzles.

Time improvement

We validate the efficiency of our utility function C3 by comparing the resulted average total

times with similar cases using C1 over 10000 simulations3. Like real experiments, we assumed

that human actions are constant, and we change merely the robot actions. We calculate the

time improvement (4.8) by comparing the average total times (DC3) calculated using the utility

function of C3 to the average total times (DC1) calculated using the state-of-the-art utility

function (i.e., C1).

Percentage of time improvement =
DC1 −DC3

DC1

∗ 100 (4.8)

This is illustrated in Figure 4.7 for a 4-cube puzzle with a ratio tAh
/tAr = 1/5. As it can

be observed, the experiment times are improved up to 66.7 %. Another example is given in

Figure 4.8 for a 3-cube puzzle with a ratio tAh
/tAr = 1/3. This ratio is the same as the one

we had while doing the real experiment with Nao and a human participant. In this case, the

experiment times are improved up to 40 %. The percentage of the time improvement depends

on how much the human participant is “intelligent”.

3All the results are presented on https://github.com/MelodieDANIEL/Optimizing_Human_Robot_

Collaboration_Frontiers
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Theoretically, however, this percentage can reach a value close to 100 % for a very small

time taken by the human (which leads to a very small DC3) and a very big time taken by

the robot (which leads to a very big DC1). We can note that having the time improvement

percentage equal to 0 signifies that we are using C1; while utilizing C2 increases the value of the

time improvement percentage. It means that in the worst-case scenario, the efficiency of our

formalization is as the state-of-the-art peers.

Figure 4.7: Percentage of time improvement between C3 and C1 for a 4-cube puzzle. tAh
=

{15, 0, 15} and tAr = {75, 0, 75}, so the ratio tAh
/tAr = 1/5. P (Ah,g) = I1, P (Ah,w) =

I2, and P (Ah,b) = I3 = 1− (I1 + I2). In this figure, each dotted line is equivalent to a specific
I1 value. Each dot corresponds to a I2 value (read on the x-axis). For each dot knowing I1 and
I2, we can deduce its I3 value using I3 = 1− (I1 + I2). For illustrating, we give I1, I2, and I3
values of the dot marked in the figure.

Reduction of the number of human errors

For reducing the time to completion, we consider the probability of human errors in (4.7).

So, we choose between C1 and C2, the case which minimizes the time by reducing the number

of iterations needed for solving the puzzle. This means choosing the case which reduces the

number of human errors as explained in Section 4.6.2. We calculate, in (4.9), the Percentage

of Human Errors Reduction (PHER) using the difference between the predicted probability of

human errors I3 and the average (over the 10000 simulations) measured probability of human

errors
Nhe

Nha
.

PHER =


 I3−

(
Nhe
Nha

)
I3

 ∗ 100 if I3 > 0

0 if I3 = 0

(4.9)
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Figure 4.8: Percentage of time improvement between C3 and C1 for a 3-cube puzzle. tAh
=

{15, 0, 15} and tAr = {45, 0, 45}, so the ratio tAh
/tAr = 1/3. In this figure, each dotted line is

equivalent to a specific I1 value. Each dot corresponds to a I2 value (read on the x-axis). For
each dot knowing I1 and I2, we can deduce its I3 value using I3 = 1− (I1 + I2).

Where I3 is the predicted probability that the human makes a wrong move (makes an error),

Nhe the measured number of human errors, and Nha the measured total number of human

actions. So,
Nhe

Nha
will be the measured probability that the human makes an error after one

simulation. The reduction of the number of human errors is as big as
Nhe

Nha
is small.

The reduction percentage of the number of human errors increases with the reduction of tAr

(the time the robot takes to make an action) and the reduction of the number of cubes that

should be assembled to solve a puzzle. In other words, the human will have fewer turns to play

and so fewer chances to make mistakes. The best result we got is presented in Figure 4.9 (for a

2-cube puzzle with tAh
= tAr): the reduction percentage of the number of human errors is up to

50.6 %. Another example is given in Figure 4.10 for a 3-cube puzzle with a ratio tAh
/tAr = 1/3.

This ratio is the same as the one we had while doing the real experiment with Nao and a

human participant. In this case, the percentage of human errors reduction is up to 27.9 %. The

result can be better in case that the robot is faster than the human in performing an action

(tAr < tAh
). Note that, when the I3 is equal to 0 %, the percentage of human errors reduction is

also equal to 0 %. It means that the human never makes errors, so there is nothing that needs

to be improved.

Appendix B introduces Table B.1, which contains the numerical values of the percentage of

time improvement and the reduction of the number of human errors for all the figures presented

in this section. In the next section, we will precise the computation and execution time of the

tests conducted in real and simulation.
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Figure 4.9: Percentage of human errors reduction between the predicted probability of human
errors and the measured one for a 2-cube puzzle. tAh

= {15, 0, 15} and tAr = {15, 0, 15}, so
the ratio tAh

/tAr = 1/1. P (Ah,g) = I1, P (Ah,w) = I2, and P (Ah,b) = I3 = 1 − (I1 + I2). In
this figure, each dotted line is equivalent to a specific I1 value. Each dot corresponds to a I2
value (read on the x-axis). For each dot knowing I1 and I2, we can deduce its I3 value using
I3 = 1− (I1 + I2).

Figure 4.10: Percentage of human errors reduction between the predicted probability of human
errors and the measured one for a 3-cube puzzle. tAh

= {15, 0, 15} and tAr = {45, 0, 45}, so the
ratio tAh

/tAr = 1/3. In this figure, each dotted line is equivalent to a specific I1 value. Each dot
corresponds to a I2 value (read on the x-axis). For each dot knowing I1 and I2, we can deduce
its I3 value using I3 = 1− (I1 + I2).
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Step Time in seconds

Real tests Computation time of the robot’s DM process
(by applying our formalization)

The robot takes an average of 0.5 s to choose the action
to perform after knowing the state of the puzzle through
the perception part.

Time taken by the robot for the perception
of the puzzle state

The robot takes between 20 s and 30 s depending on how
well the cubes are placed and how many cubes are left
to assemble.

Time taken by the robot for doing a physical
movement

The robot takes on average 15 s for doing a physical
movement.

Waiting time for the robot when it gives an
indication to the human

The robot waits between 5 s and 15 s each time it gives
an indication to the human, depending on its complexity
(for example, to ask the human to remove a cube, the
robot waits for 5 s, and to ask the human to take a
certain cube and place it in a certain position, the robot
waits for 15 s).

Global time taken by the robot to perform
an action

It is between 20 s and 60 s, depending on the complexity
of the movement (the number of cubes left to assemble
at this iteration) and if the robot gives indications to the
human. We considered that it was 60 s.

Global time taken by the human to perform
an action

The human takes between 1s and 30 s, depending on the
complexity of the movement (if they know what to do
or not). We considered that it was 20 s.

Tests in
simulation

Time required for all probability distributions
of possible human actions without printing
the figures (such as Figures 4.8 and 4.10)

The Python code takes between 80 s and 100 s on a Dell
laptop with an Intel Core i7 CPU and 32 GB RAM.

Table 4.3: Computation and execution times of the experiments in real and in simulation.

4.7 Computation and execution time of the tests

Table 4.3 presents all the computation and execution times of the experiments in real and

in simulation. As we can notice, the average computation time of our DM framework is 0.5 s.

This computation time is suitable for the targeted real tasks on which we want to apply this

framework.

4.8 Conclusion

In the previous chapter, we proposed a new formalization of the robot’s DM process to

perform the task and accomplish it more efficiently. In this chapter, we assessed through the

experiments that our formalization could be applied to feasible tasks and optimize the HRC in

terms of all defined metrics. We also proved through the experiments that we can change the

three studied case scenarios by changing the performance metrics in the utility function (i.e.,

reward function) without changing the entire framework.

Validating this, experiments are carried out by simulating the task of solving the construction

puzzle. It shows that using our proposed utility function instead of the state-of-the-art utility
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function improves the experiment time up to 66.7 %, hence improving the HRC without

extending the robot’s abilities. Theoretically, this improvement can reach a value close to 100 %.

We also got a percentage of human errors reduction up to 50.6 % by considering the predicted

probability that the human makes errors for optimizing the time to completion.

As we can notice from the conducted experiments, even though we were able to optimize

the collaboration, the improvement was restrained because the abilities of collaborative robots

are very limited, especially Nao. More precisely, while achieving the “assembly task”, the robot

was much slower than the human, which disabled the optimization of the performance metrics.

Nao was unable to do the pick and place task adequately. To maximize the optimization of

collaborative performance, we need to increase the robot’s manipulation dexterity.

In the next part, we will focus on improving the robot’s manipulation dexterity while it

performs a soft object manipulation task thanks to a Deep Reinforcement Learning (DRL)

approach. We chose to perform a deformable object manipulation task because it is a more

challenging problem to solve than rigid object manipulation. In the next chapter, we will present

all the background of the manipulation of soft objects (especially the deformable linear objects)

and the DRL approaches we use.
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From decision to action
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Linear Objects, Deep Reinforcement
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The physical capabilities of collaborative robots are restrained. Thus, from the results we

got in the previous chapter, the collaboration improvement was limited even though we could

optimize it utilizing our framework developed in the last part. The pick and place application

was too complex regarding the physical abilities of the robot. Indeed, Nao was significantly

slower than the human agent, which prevented the optimization of the performance metrics

from being maximized.

In this part, we want to focus on enhancing the robot’s manipulation dexterity to further

improve the collaboration performance. We aim to make the human-robot collaborative team

able to perform more complex tasks requiring the robot to be at least as fast as the human

agent to be able to adapt to them. To achieve this, we will also use a Decision-Making (DM)

approach. We will utilize an approach based on Deep Learning (DL) to avoid the problems

faced by classical control methods to represent complex tasks since they do not easily consider

changes in the task components [160,161]. Indeed, to change any of the many components of

complex tasks using the classical control methods, the entire architecture (i.e., the equations)

must be redesigned. Adding extra agents or changing the steps needed to accomplish the task

can be considered examples of changes requiring fundamental alterations to the architecture

design.

An excellent example of a complex application is to make the collaborative team perform

a co-manipulation task in which a human and a robot deform a Soft Object (SO) to make it

reach a final desired shape (cf. Figure 5.1). On the one hand, some works tend to perform

this physical interaction using classical control methods. On the other hand, some others

use decision-making methods and, more precisely, Deep Reinforcement Learning (DRL) based

approaches for accomplishing the task. However, they are all considering rigid objects. Table 5.1

presents some of these works and our targeted contribution.

Figure 5.1: A human-robot collaborative team achieves a co-manipulation task in which they
are deforming a SO to make it reach a final desired shape.

Since making the collaborative team able to deform a SO is a highly challenging task, we

divided it into several less complex intermediate steps:

1. We use the DRL approach to make the robot able to deform the SO in Chapter 6. This
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Deep Reinforcement Learning (DRL) Classical control methods

Human-Robot
Collaboration (HRC)

In [74], the robot and the human are lifting
a heavy rigid object.

In [151], a human is guiding a robot to draw
straight lines.

Soft Object (SO) In [90], the robot folds a towel up, folds a
face towel diagonally, and drapes a piece of

cloth over a hanger.

In [162], a shape servoing approach is
introduced for soft thin-shell objects based

on As-Rigid-As-Possible (ARAP)
deformation model.

HRC and SO Contribution: to the best of our
knowledge, there is no work combining

DRL with HRC and SO

In [163], using classical control, they aim to
make the robot and the human capable of

transporting a piece of cloth.

Table 5.1: State-of-the-art of manipulating a SO by a human and a robot and our targeted
contribution.

approach can generalize the initial and final desired deformation of the SO more easily

than the existing ones in the literature.

2. We applied this approach to a dual-arm robotic agent that deforms the SO in Chapter 7.

The results prove that the approach is as generalizable as when it was tested on a single-arm

robot.

3. In the future, we want to apply this approach to the human-robot collaborative team that

deforms the SO. We plan to achieve this by having a separate agent for each robotic arm

during the training phase and replacing one of the robotic arms with a human agent in

the testing phase in real. Training two individual robotic agents can be performed thanks

to multi-agent deep reinforcement learning approaches [164–166]. We will discuss this

concept further in Chapter 8.

4. As future work, we also want to maximize the optimization of this collaboration by

considering some performance metrics such as the time to achieve the deformation, the

accuracy of the reached deformation, the robot’s dexterity, and the robot’s velocity to

adapt to the human agent.

The final goal of this part is to adapt the robot’s behavior to the human during their

collaboration to deform a SO. The robot’s DM method will be DRL, and its DM strategy will

be dominance (i.e., the robot chooses the actions with the maximal reward). In this chapter, we

introduce the background of manipulating deformable linear objects and DRL techniques we

use.

5.1 Motivation

The manipulation of deformable objects is currently a relevant topic in robotics research

[160,167]. In particular, robotic manipulation of deformable linear objects is essential for many

industrial and daily life applications such as, cable harnessing [168,169], USB wire soldering [170],
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vegetable plant manipulation [171,172], surgical suturing [173], knot tying [174], and assisted

living [175]. The manipulation of a Deformable Linear Object (DLO) by single or dual robotic

arms is challenging because of its high number of degrees of freedom [176]. One possible

perspective on this problem is to study model-based manipulation planning, as done in [177–182].

The major flaw of the model-based approaches is the inaccuracy of the generated model due

to the complexity of the deformation modeling [176]. Another problem with those techniques

is that the generated model is only valid for a specific object or a category of objects, such

as DLOs. Moreover, the model has an intractable high dimensionality since it specifies all SO

deformations configurations [175].

In this work, we are instead interested in the online control of single or dual robotic arms to

deform a DLO in a desired way in conditions of high uncertainty and with no knowledge of the

object’s mechanical deformation model (i.e., we want to develop a model-free method). The

works that addressed a similar scenario considered mostly 2D workspaces [168,183–187], while

control in 3D is significantly more challenging due to the higher complexity of object modeling

and perception [87]. Some works addressed control in 3D for small deformations [169, 188].

Overall, while classical methods have achieved important progress in this field, the existing

challenges motivate us to explore a solution based on DRL [161,176].

The robotics community has increasingly adopted the usage of DRL algorithms to control

robots [79]. Most of these works involve working with rigid bodies with no or negligible

deformations [90,160]. However, SO manipulation has many crucial applications, especially in

household robotic assistance, medicine, and industry [90,189]. In industrial automation, DRL

has already been identified as interesting in tasks with high modeling uncertainty and the need

for high dexterity. For instance, [190,191] used reinforcement learning for industrial assembly,

albeit without having to deal with deformable objects, as we do here.

In the literature, the works based on DRL for manipulating deformable objects are, on the

one hand, only formulated for simple tasks [160] such as hanging a cloth [90, 189], folding a

cloth [192,193], cable insertion [194], rope knotting [195], or moving a rope [161,175,193,196,197].

On the other hand, most of the SOs used are 2D [160]: the mesh used to model the object is

a 2D mesh, i.e., formed by 2D polygons such as triangles. Promoting progress in this regard,

SoftGym [198] presented a set of benchmarks for manipulating SOs (including 3D objects) using

OpenAI Gym [199] and Python interface.

The main drawback of the existing techniques mentioned previously, whether used in

simulation [161, 189] or in real experiments [90], is that they are not easily generalizable

[79, 160,161,175,193,195,197]. Their agent is trained to perform a manipulation from constant

initial to constant target deformations, and it is not trained to deal with different configurations.

As an example in DLO manipulation, in [161], the authors control the object shape from some

initial states to some desired deformations that are not changeable.
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This chapter describes an approach for the robotic control of the shape of DLOs. We use a

combination of state-of-the-art DRL algorithms and techniques. We use learning parallelization

to make our approach generalizable, i.e., we execute multiple agents in parallel on various

environment instances. We focus our study on DLOs. to sum up, the contributions of our

control approach are:

1. Its generalizability, i.e., we train the agent (a single-arm or a dual-arm robot) only once

(using a specific SO), and it can deform the SO starting from a different initial position

and end up with a different desired shape. Moreover, the agent can make the SO reach an

untrained position, i.e., we train the agent on a small workspace and test it on a bigger

one.

2. It can achieve a more complex task than the ones performed in the literature. As shown

in Figure 6.1 and Figure 7.1, the agent deforms a foam bar by making some selected mesh

nodes reach the corresponding desired positions in 3D space, potentially involving complex

torsion motions. This is made possible by modeling the object with a 3D tetrahedral mesh

and via our DRL system design.

We train and evaluate our approach in simulation. The results are shown in Chapter 6 for a

single-arm robot and in Chapter 7 for a dual-arm robot. Our evaluation is carried out in diverse

conditions, and it validates the capability of the proposed approach. We made some preliminary

tests and proposed a solution in Chapter 6 to transfer what the agent learned in simulation

to a real single-arm robotic agent. In the next section, we introduce some background on SO

manipulation using DRL approaches.

5.2 Background on SO manipulation using DRL

This section gives background on the problem of SO manipulation using DRL. We will focus

on discussing aspects that are particularly important for our application.

5.2.1 Representing deformable object shape

The most widely used technique is to represent the SO shape through images [189, 200]

instead of modeling it since it is challenging to have a precise model [160]. In [90], a neural

network detects the SO shape thanks to supervised learning. The disadvantage of using images

is that the computational cost increases, and it is hard to learn afterward (i.e., via DRL) because

the resulting state space is large [189]. In [161], a method based on geometry calculations

is proposed to represent the object shape. Another method is based on selecting some mesh

nodes in the object model describing the deformation and using their positions as state space

inputs [160,189]. We preferred to use the latter technique because it is easier to set up, and it

keeps the size of the space-state relatively small, which facilitates the training.
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5.2.2 Techniques to deal with the manipulation complexity

The most common technique in the state-of-the-art is to combine Imitation Learning (IL)

with reinforcement learning [160]. IL is used to reduce the complexity of the manipulation by

using demonstrations given by an expert. Another method that we mentioned previously is to

have a detailed perception of the object’s shape through images [189]. The drawback of both

methods is that they have a high computational cost and a large state space [161, 189]. We

prefer to use only a DRL algorithm and select a few mesh nodes that describe the deformation of

the object as input to the state space. This way, our state space is small, which makes learning

easier.

5.2.3 Physics-based simulator

Usually, the training of the agent is done in simulation, using a physics-based simulation

engine [79]. This is because reinforcement learning requires many trial-and-error episodes

(i.e., interactions with the environment) to learn the correct policy, which can hardly be done

using a real robot to avoid damaging it. OpenAI Gym [199] defines an architecture with the

main components needed to train the agent, such as reinitializing the environment, making

an action, getting an observation of the state of the environment, and computing the reward.

The environment created on the simulator has to have such components. The most popular

simulators for deformable object manipulation in the robotics community are MuJoCo [201] and

Bullet [202]. We prefer to use PyBullet, the Python interface of Bullet, because it is powerful

and open-source. We utilized PyBullet also because most deep learning libraries are developed

in Python.

In the following section, we concretely formulate the components used within our DRL

control approach.

5.3 Components of our DRL control approach

In this section, we present standard components of DRL techniques that we use. We focus

on explaining how we incorporate them together. These elements include the RL procedure, the

Bellman equation, the Deep Deterministic Policy Gradient (DDPG) algorithm, and the reward

function. In this chapter, we simplified the mathematical notation since we concentrated our

work on one agent in the first instance, i.e., a robot with single or dual arms. Since in a first

time, we do not try to optimize the performance metrics, we do not take into consideration the

sets {M}, {R}, {ϵ} used to calculate the reward function (or utility function) fu in Chapter 3

(cf. Figure 3.1). We consider the DRL as our DM method. Our goal is to make the agent choose

the actions that increase its manipulation dexterity within the robot’s physical abilities {A}
(i.e., the robot’s articular limitations). The set {A} is settled in the simulator (i.e., Pybullet),
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which leads to only having to consider the task constraint {G} within the reward function fu.

Then, the utility profile is reduced to a simple value that will evaluate the actions with respect

to {G}. From now on, to respect the DRL nomenclature, we will call this value a reward.

Figure 5.2: Overview of our proposed approach for controlling the deformation of a SO via the
DDPG algorithm. The structure of the full DRL system and relevant parameters are displayed.

5.3.1 RL procedure

We consider a classical trial-and-error RL procedure consisting of an agent (e.g., the robot)

interacting with the environment (e.g., the SO) based on the policy (or DM strategy) to maximize

rewards on discrete timesteps [203]. In each transition (or iteration) k, the agent starts from the

state sk, and takes an action ak, which changes the state to a next state sk+1 [22]. The state sk

and the action ak are included in the continuous state space S, and the continuous action space

A, respectively, i.e., sk ∈ S and ak ∈ A.

The observation the agent got from the environment describes the changes that happened

by moving from state sk to sk+1. The reward rk evaluates the action taken ak according to the

task goal. The agent’s goal is to learn the optimal policy π∗ : S −→ A throughout the different

transitions. A transition k is made of an action ak, a state sk, a next state sk+1, and a reward

rk.

5.3.2 Off-policy vs on-policy learning

Off-Policy learning algorithms evaluate and improve a policy different from the policy used

for action selection [204]. We decided to use an off-policy (as opposed to an on-policy) algorithm
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for several reasons. First, when one uses an off-policy algorithm while parallelizing the learning,

it speeds up the convergence, i.e., learning can be faster [85, 86]. Parallelizing the learning

means executing multiple agents in parallel on various environment instances. We will discuss

this concept further in Section 5.3.6. Second, off-policy algorithms are more suitable for an

environment where the agent does not have to explore much [204]. This is generally the case

for robotic arms applications since the robot’s workspace limits the environment exploration.

These problems are more frequently solved in the literature using off-policy algorithms such as

in [90,161,194,196].

5.3.3 Bellman equation used for critic networks learning

In this section, we introduce the Bellman equation used within the Actor-Critic methods [203]

for critic networks learning (i.e., Q-learning), a very popular off-policy learning technique [204].

The Bellman equation [158] is used to calculate a Q-value Qk
B(s

k, ak) that evaluates the action

ak chosen in a current state sk. The Bellman equation (5.1) considers the discount factor

(γ ∈ [0.9, 1]) and the next Q-value Qk+1(sk+1, ak+1) to calculate Qk
B(s

k, ak). The discount

factor controls how much the DRL learning is considering future rewards. The next Q-value

Qk+1(sk+1, ak+1) is calculated for choosing the next action ak+1 in the next state sk+1.

Qk
B(s

k, ak) = rk + γ ×Qk+1(sk+1, ak+1). (5.1)

5.3.4 Deep Deterministic Policy Gradient (DDPG)

The DDPG is a DRL algorithm based on Actor-Critic methods used for dealing with

continuous action spaces [203]. It learns a Q-function and a policy by utilizing off-policy data

and the Bellman equation [189]. The actor network (policy network) has as input the state sk

and gives as output the optimal action ak. The critic network (Q-function network) evaluates

the optimality of the action ak chosen at state sk by attributing it the Q-value Qk(sk, ak) at

transition k. Figure 5.2 presents an overview of the approach established to make the agent

deform a SO using the DDPG algorithm. Next, we detail the modules in the algorithm.

Pre-training procedure

The agent applies the action ak selected by the actor network within the state sk to the

environment in order to store the inputs of the environment (ak selected in sk) and its outputs

(sk+1 and rk) that constitute the transition k in the replay buffer (cf. Figure 5.2). The training

of the actor and critic networks can only begin once the replay buffer contains enough transitions

to extract a batch. A batch is composed of elements (i.e., actions a, states s, next states s′, etc.)

coming from several non-sequential transitions. These transitions are selected randomly.
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Training procedure

Making the agent learn from previous memories, i.e., using batches, accelerates learning and

breaks undesirable temporal correlations [205]. The training of the critic network consists of

reducing the error between the Q-values calculated using the Bellman equation QB(s, a) (cf.

(5.1)) and the Q-values estimated by the critic network Q(s, a) (cf. Figure 5.2). The Q-values

number equals the batch size Nb, i.e., the number of selected transitions to train the agent. The

Mean Square Error (MSE) optimization technique is used to reduce that error, i.e., we use the

following Critic loss:

Critic loss = MSE(QB(s, a), Q(s, a)). (5.2)

The weights of the critic network are updated based on the critic loss. The ADAM

optimizer [206] is used to calculate the gradient descent. The Q-values given by the critic

network Q(s, a) are used to evaluate the actions a chosen by the actor at states s. Then, the

actor’s training is based on the Q-value given by the critic network, i.e., the actor loss is equal

to the Q-value. Since the agent’s training is made from a batch, one obtains as many Q-values

Q(s, a) (cf. Figure 5.2) as there are transitions in the batch. The policy loss is calculated by

taking an average of the Q(s, a) [203]:

Policy loss = −Q(s, a) = −
∑Nb

k=1Q
k(sk, ak)

Nb

. (5.3)

The weights of the actor network are updated based on the policy loss.

Target networks

Using a target network is a technique to stabilize learning. A target network is a copy of the

main network’s weights held constant to act as a stable target for learning for a fixed number

of timesteps [203]. We use Polyak averaging to update the target networks (also called soft

updating) once per the main network’s update [207]:

WAT
= τWA + (1− τ)WAT

(5.4)

WCT
= τWC + (1− τ)WCT

, (5.5)

where the used terms are:

• WAT
: the weights of the actor target network.

• WA: the weights of the actor network.

• WCT
: the weights of the critic target network.

• WC : the weights of the critic network.

71



Chapter 5 Background on DLO and DRL

• τ : the Polyak factor.

We choose to utilize the DDPG algorithm as our DRL algorithm because it is suitable for

continuous action spaces. It has fewer parameters to set than other actor-critic DRL algorithms.

It is a powerful tool to generalize the training, combined with parallel learning.

5.3.5 Reward function

The reward function is the key element that allows us to control and optimize the agent

policy (or DM strategy) of choosing actions [22]. More details about choosing the suitable

reward function are given in [204, 208]. The most straightforward dense reward function for

accomplishing our task ({G}) is to use a Euclidean distance-based calculation [161]. Therefore,

in Chapter 6, our reward rk is calculated as the average Euclidean distance between the current

positions of the selected mesh nodes and their desired positions. To have more accurate results,

in Chapter 7, our reward rk is calculated as the maximum Euclidean distance between the

current positions of the selected mesh nodes and their desired positions.

5.3.6 Learning parallelization

The actor-critic DRL algorithm A3C [209] proposes to asynchronously execute multiple

agents in parallel on various instances of the environment. That parallelism decorrelates the agent

learning data since, at any transition, the parallel agents will be experiencing a variety of different

states. Combining batch extraction and learning parallelization for off-policy algorithms ensures

that the training data are decorrelated and can be collected faster [85, 86]. Thus, combining

both techniques improves the overall learning time while achieving a better result from the

generalization point of view. That is why we train the agent using DDPG on a single multi-core

CPU, as in [209].

5.4 Conclusion

In this part, we focused on enhancing the robot’s manipulation dexterity. We aimed to make

the human-robot collaborative team able to perform complex tasks requiring the robot to be

at least as fast as the human agent to be able to adapt to them. An excellent example of a

complex application is to make the collaborative team perform a co-manipulation task in which

a human and a robot deform a SO to make it reach a final desired shape. The final goal of this

part is to adapt the robot’s behavior to the human during their collaboration to deform a SO.

The robot’s DM method is DRL, and its DM strategy is dominance (i.e., the robot chooses the

actions with the maximal reward). Since making the collaborative team able to deform a SO is

a highly challenging task, we divided it into several less complex intermediate steps: making

a single robotic arm deform the SO, making dual robotic arms deform the SO, replacing one
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of the robotic arms by a human agent and performing co-manipulation of the SO in real, and

optimizing the collaboration performance thanks to some performance metrics.

This chapter proposed a robotic control approach for manipulating SOs. A DRL approach

is used to make the shape of a deformable object reach a set of desired points by controlling a

robotic agent (a single-arm or a dual-arm robot) which manipulates it. Our approach is more

easily generalizable than existing ones: it can work directly with different initial and desired

final shapes without the need for relearning. We achieved this by using learning parallelization,

i.e., executing multiple agents in parallel on various environment instances. We focused our

study on deformable linear objects. These objects are interesting in industrial and agricultural

domains, yet their manipulation with robots, especially in 3D workspaces, remains challenging.

In the next chapter, we simulate the entire environment, i.e., the SO and the agent (a single

or a dual arms robot), for the training and the testing using PyBullet and OpenAI Gym. We use

a combination of state-of-the-art DRL techniques, the main ingredient being a training approach

for the learning agent based on DDPG. Our simulation results presented for a single-arm robot

support the usefulness and enhanced generality of the proposed approach. We also do some

preliminary tests and propose a solution in Chapter 6 to transfer what the agent learned in

simulation to a real single-arm robotic agent.

This chapter and the results presented in Chapter 6 were published at an international

conference under the reference: Hani Daniel Zakaria, M., Aranda, M., Lequièvre, L., Lengagne,

S., Corrales Ramón, J. A., & Mezouar, Y. (2022). Robotic Control of the Deformation of

Soft Linear Objects Using Deep Reinforcement Learning. In 2022 18th IEEE International

Conference on Automation Science and Engineering (CASE). IEEE.
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The previous chapter introduced a robotic control approach for manipulating Soft Objects

(SOs) based on a Deep Reinforcement Learning (DRL) approach that is more generalizable

than the existing ones because we parallelized the learning of the agent. In this chapter, we

settle all the parameters of the Deep Deterministic Policy Gradient (DDPG) algorithm as well
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as the simulation parameters to make a single-arm robot able to deform a soft linear object.

We also present simulation results that prove that our control approach is more generalizable

than existing approaches since our agent can directly deform the SO from an initial shape to a

desired final shape different from those used during training without needing to relearn. At the

end of this chapter, we make some preliminary tests and propose a solution to transfer what

the agent learned in simulation to a real single-arm robotic agent.

6.1 Problem statement

We address the problem of controlling the deformation of a Deformable Linear Object (DLO)

using a robot arm that manipulates it. For simplicity, the robot grasps one end of the object

to not have to deal with the gripper positioning problem [210], and the other end is fixed to

the ground. The object is represented by a mesh, and we describe its deformation by a set of

selected mesh nodes. The objective is to control the arm so that the positions of the selected

nodes are driven to prescribed values. The difficulty of this indirect control problem lies in the

fact that the dynamical model of the system to be controlled is complex and uncertain. In the

previous chapter, we proposed a generalizable architecture to solve this problem based on DRL.

The problem setup is illustrated in Figure 6.1.

Figure 6.1: The setup we consider, including an illustration of some elements of our methodology.
The robot deforms the soft linear object (green) by making the selected mesh nodes (i.e., the
blue points) reach the desired corresponding positions (i.e., the red points). The points are
marked as crosses. The robot tip position has to remain within the deformation workspace (i.e.,
the red box) for performing the desired deformation. The deformation workspace used in testing
is bigger than the training workspace. The blue box delimits the robot’s workspace, i.e., the
robot’s gripper tip cannot reach a position out of that box due to the robot’s articular limits.

We train and evaluate our approach in simulation. Our evaluation is carried out in diverse

conditions, and it validates the capability of the proposed approach. The following section
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presents all the parameters of our approach, whose values must be set according to the single-arm

application.

6.2 Implementation

After having introduced all the necessary DRL components in Section 5.3, we describe in

this section how we apply them to address the specific problem scenario considered (Section

6.1). We provide the implementation details including all assigned values for the DDPG and

simulation parameters.

6.2.1 Approach overview

Before starting the learning phase, we create a deformation space box within which the robot

gripper tip moves to deform the object, and we record the positions of the selected nodes Pd

in a database. The reason for using a deformation space box is to record several deformations

within a limited space that is reachable by the gripper tip. We have created different databases,

each based on a box of different size: the training one, which is smaller, and the testing one,

which is larger. All the details about the databases are mentioned in Section 6.2.3. The robot’s

objective is to manipulate the object so that the current positions of the selected nodes Pc reach

the desired positions Pd within a tolerance threshold.

Figure 5.2 gives an overview of our architecture. The action ak given by the DDPG to the

agent (i.e., the robot) is the Cartesian velocity of the gripper tip ak ∈ A = (Vx, Vy, Vz) =⇒
ak ∈ R3. The action ak is continuous since each element of the velocity (Vx, Vy, or Vz) can have

any value within the interval [−1, 1]. Then, the action ak is integrated according to the timestep

(which is equal to 0.06 s) to calculate the new gripper tip position (Xn, Yn, Zn). The classical

position-based controller available in Bullet moves the arm from its current position (Xc, Yc, Zc)

to the new one (Xn, Yn, Zn). Since the DLO is grasped by the gripper tip, moving the gripper

tip will move the mesh nodes ako to some new positions Pc.

The state sk ∈ S is made up of the gripper tip current state skg ∈ R6 and the current object

shape sko ∈ R6m (cf. (6.1)) with m the number of selected mesh nodes. sgt includes the gripper

tip position (Xc, Yc, Zc) and velocity (Vx, Vy, Vz). s
k
o is composed of the positions of the selected

mesh nodes Pc ∈ R3m, and their desired positions Pd ∈ R3m.

sk = (skg , s
k
o) ∈ S = (Xc, Yc, Zc, Vx, Vy, Vz, Pc, Pd). (6.1)

We calculate the reward rk as the average Euclidean distance Dk between the current positions

of the selected mesh nodes Pc and their desired positions Pd (cf. (6.2)). Using subindex j to
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denote the position of a single mesh node, we have:

rk = fu({G}) = −Dk(Pc, Pd) = −
∑m

j=1D
k(Pcj , Pdj)

m
. (6.2)

6.2.2 DDPG parameters

The actor, actor target, critic, and critic target Deep Neural Networks (DNNs) have the

same architecture: 3 Fully Connected (FC) hidden layers, each of which comprises 256 neurons.

We use the Rectified Linear Unit (ReLU) as an activation function. We apply the Tanh function

on the actor outputs ak to ensure that the gripper tip velocities remain in the interval [−1, 1].

We add noise to the action ak using Ornstein-Uhlenbeck noise [203] for the exploration. We

initialize the DNNs of the actor and critic with random values as in [203]. The actor target and

critic target DNNs weights copy those of the actor and critic DNNs. The ADAM optimizer is

used for gradient updates with learning rates of αA = 0.0001 for the actor and αC = 0.001 for

the critic. A batch of 128 transitions is randomly sampled from the replay buffer, containing

50000 transitions. We use a constant discount factor γ = 0.99 and a constant Polyak factor

τ = 0.01.

Since we use parallel learning, in each episode (or epoch), 32 agents are trying to achieve a

different deformation during 300 transitions. This means that each agent makes 300 actions

and passes through 300 different transitions to try to achieve 32 different goals (each agent has

a different goal). Each action will have a reward rk, and each agent will have a global reward

equal to the sum of the action reward over the 300 transitions. This leads to having different

gradients that are synchronized among the 32 agents, i.e., there will be one final gradient equal

to the sum of all the 32 gradients. Then 32 agents networks are updated based on that final

gradient so that all these networks keep having the same updated weights. We train the 32

agents during 63 episodes, which is equivalent to 32 ∗ 63 = 2016 episodes if we use a single

agent and do not parallelize the training. The training lasts from 1000 to 1 million episodes in

the literature [161,189]. For training 32 agents, we used 32 CPU cores and the Python library

MPI [211]. All the conducted training lasted less than three and a half hours.

6.2.3 Simulation parameters

We use PyBullet as the simulator’s physics engine to train our agent. The simulator’s physics

engine uses the FEM method [212] to simulate the SO, which is cylindrical with a diameter of 5

cm and a height of 1.55 m. The model of our SO is built up from a 3D tetrahedral mesh. That

model comprises 200 nodes, 392 tetrahedrons, 789 links, and 396 faces. The SO has the following

mechanical parameters: the Young’s modulus is equal to 2.5 MPa, the Poisson coefficient is

equal to 0.3, the mass is equal to 0.2 Kg, the damping ratio is equal to 0.01, and the friction

coefficient is equal to 0.5. These values are selected among the intervals given in [161,213,214]
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for polyurethane materials which are the most used in the industry to make foam bars. The

simulation timestep is equal to 0.003 s. We choose the timestep to integrate the action ak as

equal to 20 ∗ 0.003 = 0.06 s, i.e., sufficiently larger than the simulation timestep.

We created three databases, each based on a box of different 3D size. The gripper tip moves

inside that box to deform the object, and we recorded those deformations to use them as desired

positions Pd in the training and the testing phase. Figure 6.2 shows the small, the medium,

and the large boxes. The small box size equals 0.15 m on the x-axis, 0.5 m on the y-axis, and

0.25 m on the z-axis. The medium box size is equal to: 0.2 m on the x-axis, 0.6 m on the

y-axis, and 0.25 m on the z-axis. The large box size equals 0.2 m on the x-axis, 0.8 m on the

y-axis, and 0.3 m on the z-axis. The small box generates the small database, which contains

930 deformations. The medium box is used to generate the medium database, which includes

930 deformations. The large box generates the large database, which has 2651 deformations.

We decided to sample the same number of deformations in the small and medium databases to

ensure having more new deformations in the medium database. Indeed, since the difference in

the 3D size of both small and medium boxes is not big, if we sample many deformations from

the medium box, the probability of having the same deformation as using the small box is high.

For our first experiment, the small database is used for the training, and both the small and the

large databases are used for the testing. For our second experiment, the medium database is

used for the training, and both the medium and the large databases are used for the testing.

Figure 6.2: 3D boxes of different sizes used for database generation. (A) The small box (in
red) used to generate the small database. (B) The medium box (in red) used to generate the
medium database. (C) The large box (in red) used to generate the large database.

6.3 Experiments in simulation

This section presents our experimental results in simulation for both conducted experiments.

The entire code is available on https://github.com/MelodieDANIEL/robotic_control_of_

DLO_using_DRL.
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6.3.1 First experiment

For the first experiment, we trained the agent using the small database to extract the desired

deformations, i.e., the desired positions Pd of the mesh nodes. We have done three trainings to

control: two mesh nodes, four mesh nodes, and six mesh nodes. We used an average distance

error threshold of 0.05 m. As mentioned in the previous section, the training was parallelized:

32 agents were trained each for 63 episodes, leading to having 2016 episodes in total. During

the training, the environment was reinitialized to the initial configuration (the robot and the

object returned to their initial position) after each episode. Figure 6.3 shows the average reward

obtained by the 32 agents in each episode when controlling two mesh nodes, four mesh nodes,

and six mesh nodes. As we can notice from Figure 6.3, there is no need to smooth the learning

curves, as in the literature [161,189]. This is thanks to the stability of the learning due to its

parallelization.

Figure 6.3: Average reward obtained in the first experiment by the 32 agents in each episode
when controlling two mesh nodes, four mesh nodes, and six mesh nodes.

Figure 6.4: Example of the robot deforming the SO: four mesh nodes reach their desired
positions with an average distance error threshold of 0.05 m.

For the testing phase, all the results are calculated for 1000 testing episodes with 30 steps,

i.e., the robot can take a maximum of 30 actions to achieve the deformation. We test the three

trainings for an average distance error threshold of 0.05 m and 0.03 m. We evaluate them using
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Mesh nodes
number

Database Testing error
threshold (m)

Done
(%)

Mean average distance error ±σ
(m)

Best
(m)

With
reinitialization

2 Small 0.05 99.5 0.03010 ± 0.00591 0.01156

0.03 80.2 0.02987 ± 0.00993 0.01156

Large 0.05 73.2 0.05886 ± 0.02730 0.02724

0.03 21.1 0.06866 ± 0.03214 0.01862

4 Small 0.05 99.8 0.04251 ± 0.00631 0.01012

0.03 88.7 0.02816 ± 0.00758 0.01012

Large 0.05 97.2 0.04386 ± 0.00840 0.02130

0.03 46.8 0.04650 ± 0.02306 0.01309

6 Small 0.05 99.1 0.04473 ± 0.00685 0.01009

0.03 73.4 0.02796 ± 0.01183 0.01009

Large 0.05 79.0 0.05144 ± 0.01506 0.02779

0.03 20.0 0.06415 ± 0.02563 0.01548

Without
reinitialization

2 Small 0.05 87.9 0.04530 ± 0.01142 0.01579

0.03 47.5 0.04107 ± 0.01808 0.01236

Large 0.05 44.9 0.07411 ± 0.04454 0.01642

0.03 13.9 0.08038 ± 0.04536 0.02438

4 Small 0.05 93.7 0.04486 ± 0.01215 0.00569

0.03 45.2 0.05015 ± 0.02732 0.01399

Large 0.05 72.8 0.05365 ± 0.02201 0.01506

0.03 21.0 0.05873 ± 0.02551 0.01343

6 Small 0.05 36.8 0.08669 ± 0.03817 0.02106

0.03 15.7 0.07478 ± 0.03371 0.01826

Large 0.05 64.8 0.05914 ± 0.02447 0.02771

0.03 15.2 0.06244 ± 0.02655 0.01537

Table 6.1: Results of all the conducted tests for the trainings using the small database.

the small and the large databases to extract the desired deformations. We assess them finally

with and without reinitializing the environment. All these results are presented in Table 6.1. In

Table 6.1, the column “done” indicates the percentage of the agent’s success in achieving the

desired deformations. The percentage is calculated on the 1000 episodes with 30 steps. The

“Best” column reveals the minimum distance error obtained within the 1000 episodes.

Figure 6.4 presents an example of the robot deforming a SO to reach a new deformation

on which the robot was not trained. Other deformations are presented in the video available

on https://youtu.be/MbFCS59ZZ_4. As we can notice from Table 6.1, in the case that we

reinitialize the environment and use the same database and distance error threshold as in

training, the agent achieves in the worst-case scenario 99.1 % deformations. If we only change

the distance error threshold from 0.05 m to 0.03 m, the agent succeeds in attaining in the
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worst-case scenario 73.4 % deformations. If we only change the database to the large one, the

agent realizes in the worst-case scenario 73.2 % deformations. For the last test, we do not

reinitialize the environment, and we keep the other parameters constant. Specifically, the initial

position of the SO in the current episode is the desired one achieved by the robot in the previous

episode. Therefore, in order to succeed in this scenario, the agent needs to have learned a

stronger, more general policy. In this more challenging scenario, the robot succeeds in making

87.9 % deformations while controlling two mesh nodes, 93.7 % deformations while controlling

four mesh nodes, and 36.8 % deformations while controlling six mesh nodes. We can observe

that the results for four mesh nodes are better than for two mesh nodes. Our interpretation is

that describing the deformation of an object using only two mesh nodes is not precise enough;

hence the agent has difficulty generalizing what it has learned during training.

The results prove that our approach is generalizable. We trained the agent using a small

deformations database with a constant distance error threshold and reinitializing the environment

after each episode. The agent can be more precise in the testing phase than in training, as

shown by our tests with a lower distance error threshold. The agent achieves other deformations

than those used during training without needing to be retrained. The agent makes the SO reach

the desired deformation even if the object position is not reinitialized. Our method presents a

limitation when we combine the changes in the testing phase. Sometimes it performs well, such

as when we test the four mesh nodes control on the large database without reinitializing the

environment: in this case, the robot achieves 72.8 % deformations. Sometimes the test fails,

such as when we test the two mesh nodes control on the large database with a distance error

threshold of 0.03. The robot achieves only 21.1 % deformations in this case.

6.3.2 Second experiment

For the second experiment, we trained the agent using the medium database to extract the

desired deformations, and we tested it using the medium and the large database. All the rest

of the experimental configuration remains the same as in the previous experiment. Figure 6.5

presents the average reward obtained in this experiment by the 32 agents in each episode when

controlling two mesh nodes, four mesh nodes, and six mesh nodes. All the results of this

experiment are presented in Table 6.2.

If we reinitialize the environment and use the same database and distance error threshold as

in training, the agent achieves in the worst-case scenario 86.8 % deformations. Let’s suppose

we only change the distance error threshold to 0.03 m. In that case, the agent succeeds in

attaining 38.2 % deformations while controlling two mesh nodes, 69.4 % deformations while

controlling four mesh nodes, and 89.1 % deformations while controlling six mesh nodes. If

we only change the database to the large one, the agent realizes in the worst-case scenario

62.3 % deformations. For the last test, we did not reinitialize the environment and kept the
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Figure 6.5: Average reward obtained in the second experiment by the 32 agents in each episode
when controlling two mesh nodes, four mesh nodes, and six mesh nodes.

other parameters constant. In this more complex scenario, the robot succeeds in making 66.6 %

deformations while controlling two mesh nodes, 75.2 % deformations while controlling four mesh

nodes, and 74.1 % deformations while controlling six mesh nodes.

We have the same observations as in the first experiment in which we trained the agent using

the small deformations database. The results obtained for four mesh nodes are better than for

two mesh nodes. These new results keep proving that our control approach is generalizable.

We trained the agent using a medium deformations database with a constant distance error

threshold and reinitializing the environment after each episode. The agent can be more precise in

the testing phase than in training, as shown by our tests with a smaller distance error threshold.

The agent achieves other deformations than those used during training without needing to be

retrained. The agent makes the SO reach the desired deformation even if the object position is

not reinitialized. We can also observe the same limitation as in the previous experiment when

we combine the changes in the testing phase. Sometimes it performs well, such as when we test

the four mesh nodes control on the large database without reinitializing the environment: in

this case, the robot achieves 72.1 % deformations. Sometimes the test fails, such as when we

test the two mesh nodes control on the large database with a distance error threshold of 0.03.

In this case, the robot achieves only 22.8 % deformations.

In general, we can notice from the conducted experiments that the agents trained using the

small deformations database performed better than those trained using the medium deformations

database. This is because when training using the small database, the desired goals are in a

more restricted region of the 3D space, which allows the agents not to disperse and to learn

what is useful directly.
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Mesh nodes
number

Database Testing error
threshold (m)

Done
(%)

Mean average distance error ±σ
(m)

Best
(m)

With
reinitialization

2 Medium 0.05 86.8 0.04410 ± 0.00926 0.01657

0.03 38.2 0.04507 ± 0.02302 0.01136

Large 0.05 62.3 0.06501 ± 0.02863 0.02517

0.03 22.8 0.06877 ± 0.03025 0.01650

4 Medium 0.05 98.0 0.04420 ± 0.00816 0.02018

0.03 69.4 0.02334 ± 0.01449 0.01902

Large 0.05 86.2 0.05289 ± 0.02050 0.02674

0.03 37.1 0.05454 ± 0.02739 0.01119

6 Medium 0.05 96.9 0.04604 ± 0.00990 0.02184

0.03 89.1 0.02771 ± 0.00620 0.01623

Large 0.05 83.3 0.05652 ± 0.02529 0.02599

0.03 36.7 0.05983 ± 0.03295 0.01925

Without
reinitialization

2 Medium 0.05 66.6 0.05653 ± 0.02546 0.02072

0.03 20.7 0.05567 ± 0.02314 0.01715

Large 0.05 54.1 0.06432 ± 0.02884 0.01366

0.03 18.1 0.05878 ± 0.02683 0.0938

4 Medium 0.05 75.2 0.04807 ± 0.01651 0.01221

0.03 17.5 0.05944 ± 0.02533 0.01304

Large 0.05 72.1 0.06809 ± 0.03872 0.02494

0.03 22.6 0.07924 ± 0.03584 0.01572

6 Medium 0.05 74.1 0.05245 ± 0.01833 0.03283

0.03 40.8 0.04827 ± 0.02470 0.02164

Large 0.05 55.4 0.06053 ± 0.02554 0.03055

0.03 20.2 0.06795 ± 0.03580 0.01656

Table 6.2: Results of all the conducted tests for the trainings using the medium database.

6.4 Sim-to-real transfer

As explained in Chapter 2, simulation environments are used for training the different DRL

agents [79] because they offer potentially endless data sources and allay safety concerns with

real robots. However, once the models are implemented in real robots, the gap between the

simulated and real environments reduces the performance of the learned policies [90]. Therefore,

numerous research works are currently focused on bridging this sim-to-real gap and achieving

more efficient policy transfer [79]. An excellent approach for successfully transferring from

simulation to the real environment is domain randomization [79, 90]. It consists of sampling

simulation parameters (such as camera position, light position, textures, etc.) from probability

distributions centered at a noisy estimate of the ground truth [90]. As a result, the agent can

disregard small changes in the environment, making it more robust to domain changes. Thus,

the agent can deal with the sim-to-real transfer [79,90].
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At first, we did a real test without using standard sim-to-real techniques such as domain

randomization. We thought it was unnecessary to utilize them because we did not use cameras.

Indeed, to localize and track the mesh nodes we control, we utilized a motion capture system

that directly returns the 3D position of the markers. In this test, we consider the configuration

of controlling four mesh nodes on the small database with a distance error threshold of 0.05

m. We reinitialize the environment at the end of each episode. The robot can well deform the

object on the top X-Y planes but does not systematically deform the object correctly when the

deformation is severe on the Z-axis. This is because the real SO bends naturally to one side,

which is not necessarily the same bending side as in training using the simulator. Figure 6.6

shows a successful deformation on a X-Y plane and Figure 6.7 presents a failed deformation on

the Z-axis. Other deformations are presented in the video available on https://drive.google.

com/drive/folders/1LYNDyK1RK6EKwAFX8JrIiWwHqf9fwICV?usp=sharing.

Figure 6.6: Example of a successful test of the robot deforming the SO: four mesh nodes reach
their desired positions with an average distance error threshold of 0.05 m.
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Figure 6.7: Example of a failed test of the robot deforming the SO: four mesh nodes do not
reach their desired positions with an average distance error threshold of 0.05 m.

We discovered that the main sim-to-real gap problem is that the direction of the deformation

of the SO is not always the same in simulation and reality. There should not be a big difference

between the simulation and the reality. Otherwise, what the agent has learned will be useless

because the process will not be Markovian anymore. Our interpretation is that it is due to

the singularity of the initial position of the SO in the environment. Indeed, when the episode

is initialized, the robot grasps the DLO positioned vertically. This position is singular since

when the robot press the object vertically, it bends in a particular constant direction in the

simulated tests. In contrast, in real experiments, the bending direction will vary from one object

to another because of the natural plasticity of the object.
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Database Testing error threshold (m) Done (%) Mean average distance error (m)

Small 0.05 97 0.03169

0.03 93 0.02291

Medium 0.05 96 0.03245

0.03 91 0.02308

Large 0.05 86 0.05061

0.03 76 0.04526

Table 6.3: Results of the conducted tests in simulation on the extended approach. These tests
are performed for controlling four mesh nodes while reinitializing the environment after each
episode.

We propose as a solution to always orient the gripper tip before moving it in the ver-

tical direction to eliminate the singularity. We extend our simulated control approach to

include a fixed initial orientation to the gripper. We conducted simulated tests while calcu-

lating the results for 100 episodes with 30 steps. Table 6.3 presents these results. Some of

these results are shown in the video available on https://drive.google.com/drive/folders/

1LYNDyK1RK6EKwAFX8JrIiWwHqf9fwICV?usp=sharing. We found that the results of the ex-

tended approach are mainly as good as those of the original one. In some cases, the results are

even better, especially when the distance error threshold is smaller in the testing phase than in

the training phase. For example, we controlled four mesh nodes using an average distance error

threshold of 0.03 m in the testing phase (while in the training phase, it was equal to 0.05 m).

With the original approach, the robot could achieve 88.7 % of the deformations, and with the

extended approach, it can perform 93 % of them. However, the extended approach should also

be tested through real experiments to ensure the solution is viable.

6.5 Conclusion

We have assessed through experiments that our control approach based on the DDPG

algorithm is generalizable thanks to the fact that we parallelized the learning of the agent.

The generalizability of our approach is proven because the agent (i.e., a single robot arm) can

deform the SO starting from a different initial position and end up with a different desired

shape without having to relearn. We verified this by training the agent on a small or a medium

deformations database and testing it on a large deformations database. In the next chapter, we

evaluate our control approach on two Panda robotic arms to verify that our approach can deal

with dual-arm robots.
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Chapter 5 introduced a robotic control approach for manipulating Soft Objects (SOs) based

on a Deep Reinforcement Learning (DRL) approach. The previous chapter presented simulation

results for a single-arm robotic agent that prove that our control approach is more generalizable

than existing ones because we parallelized the agent’s learning. In this chapter, we settle all the

parameters of the Deep Deterministic Policy Gradient (DDPG) algorithm and the simulation

parameters to make the agent that is made of two Panda arms able to deform a soft linear

object. Our simulation results confirm the approach keeps its generality benefit when applied to
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a dual-armed system. Those results are as good as those presented in Chapter 6. They are even,

in some cases, better, i.e., when we combine the changes of the parameters in the test phase.

This is possible thanks to the new reward function we use. Indeed, the new reward values are

based on the maximum Euclidean distance between the current and the desired position of the

mesh nodes, whereas in Chapter 6, they were based on the average Euclidean distance.

7.1 Problem statement

We address the problem of controlling the deformation of a Deformable Linear Object (DLO)

by a dual-armed system. Indeed, a DRL agent controls two Panda robots that each is grasping

one end of the SO. A mesh represents the object, and we describe its deformation by a set of

selected mesh nodes. The agent’s objective is to make the positions of the selected nodes reach

their desired positions by controlling both robotic arms. Manipulating a SO with a dual-armed

system is more interesting because the two arms can achieve more complex deformations than

the ones performed by only one. The difficulty of this indirect control problem is that the

dynamical model of the system to be controlled is complex and uncertain. The problem setup is

illustrated in Figure 7.1.

Figure 7.1: The setup we consider, including an illustration of some elements of our methodology.
The agent deforms the soft linear object (green) by making the selected mesh nodes (i.e., the
blue points) reach the desired corresponding positions (i.e., the red points). The points are
marked as crosses. The agent controls both Panda arms to deform the soft object. Each arm
tip position must remain within its corresponding deformation workspace (i.e., the red boxes)
to perform a desired deformation. Each arm deformation workspace used in testing is bigger
than the training workspace. The blue boxes delimit the robots’ workspaces, i.e., each robot’s
gripper tip cannot reach a position out of that box.

We train and evaluate our approach in simulation. Our evaluation is carried out in diverse
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conditions, and it validates the capability of the proposed approach. The following section

presents all the parameters of our approach, whose values must be set according to the dual-arm

application.

7.2 Implementation

After having introduced all the necessary DRL components in Section 5.3, we describe in

this section how we apply them to address the specific problem scenario considered (Section

7.1). We provide the implementation details, including all assigned values for the DDPG and

simulation parameters.

7.2.1 Approach overview

Before starting the learning phase, we create for each robot a deformation space box within

which the robot gripper tip moves to deform the object, and we record the positions of the

selected nodes Pd in a database. The reason for using a deformation space box for each robotic

arm is to record several deformations within a limited space that is reachable by the gripper

tip. We have created different databases, each based on boxes of different size: the training one,

which is smaller, and the testing ones, which are larger. All the details about the databases are

mentioned in Section 7.2.3. The robots’ objective is to manipulate the object so that the current

positions of the selected nodes Pc reach the desired positions Pd within a tolerance threshold.

Figure 5.2 gives an overview of our architecture. The action ak given by the DDPG to

the agent (i.e., robot 1 and robot 2) is the Cartesian velocity of the gripper tip of each

robot ak ∈ A = (Vx1 , Vy1 , Vz1 , Vx2 , Vy2 , Vz2) =⇒ ak ∈ R6. The action ak is continuous

since each element of the velocity (Vx1 , Vy1 , Vz1 , Vx2 , Vy2 , or Vz2) can have any value within the

interval [−1, 1]. Then, the action ak is integrated according to the timestep (which is equal to

0.06 s) to calculate the new grippers tip positions (Xn1 , Yn1 , Zn1 , Xn2 , Yn2 , Zn2). The classical

position-based controller available in Bullet moves both arms from their current position

(Xc1 , Yc1 , Zc1 , Xc2 , Yc2 , Zc2) to their new one (Xn1 , Yn1 , Zn1 , Xn2 , Yn2 , Zn2). Since the DLO is

grasped by each gripper tip, moving the grippers tip will move the mesh nodes ako to some new

positions Pc.

The state sk ∈ S is made up of each robot gripper tip current state skg ∈ R12 and

the current object shape sko ∈ R6m (cf. (7.1)) with m the number of selected mesh nodes.

skg includes both robots gripper tip positions (Xc1 , Yc1 , Zc1 , Xc2 , Yc2 , Zc2) and their velocities

(Vx1 , Vy1 , Vz1 , Vx2 , Vy2 , Vz2). s
k
o is composed of the positions of the selected mesh nodes Pc ∈ R3m,

and their desired positions Pd ∈ R3m.

sk = (skg , s
k
o) ∈ S = (Xc1 , Yc1 , Zc1 , Xc2 , Yc2 , Zc2 , Vx1 , Vy1 , Vz1 , Vx2 , Vy2 , Vz2 , Pc, Pd). (7.1)
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We calculate the reward rk as the maximum Euclidean distance Dk between the current positions

of the selected mesh nodes Pc and their desired positions Pd (cf. (7.2)).

rk = fu({G}) = −Max(Dk(Pc, Pd)). (7.2)

7.2.2 DDPG parameters

We kept mainly the DDPG parameters as they were settled in Chapter 6. We only change

the number of training episodes. We train the 32 agents during 81 episodes, equivalent to

32 ∗ 81 = 2592 episodes if we use a single agent and do not parallelize the training. This section

is a reminder of all the DDPG parameters.

The actor, actor target, critic, and critic target Deep Neural Networks (DNNs) have the

same architecture: 3 Fully Connected (FC) hidden layers, each of which comprises 256 neurons.

We use the ReLU as an activation function. We apply the Tanh function on the actor outputs

ak to ensure that the grippers tip velocities remain in the interval [−1, 1]. We add noise to the

action ak using Ornstein-Uhlenbeck noise [203] for the exploration. We initialize the DNNs of

the actor and critic with random values as in [203]. The actor target and critic target DNNs

weights copy those of the actor and critic DNNs. The ADAM optimizer is used for gradient

updates with learning rates of αA = 0.0001 for the actor and αC = 0.001 for the critic. A batch

of 128 transitions is randomly sampled from the replay buffer, containing 50000 transitions. We

use a constant discount factor γ = 0.99 and a constant Polyak factor τ = 0.01.

Since we use parallel learning, in each episode (or epoch), 32 agents are trying to achieve a

different deformation during 300 transitions. This means that each agent makes 300 actions and

passes through 300 different transitions to try to achieve 32 different goals (each agent has a

different goal). Each action will have a reward rk, and each agent will have a global reward equal

to the sum of the action reward over the 300 transitions. This leads to having different gradients

that are synchronized among the 32 agents, i.e., there will be one final gradient equal to the

sum of all the 32 gradients. Then 32 agents networks are updated based on that final gradient

so that all these networks keep having the same updated weights. We train the 32 agents during

81 episodes, equivalent to 32 ∗ 81 = 2592 episodes if we use a single agent and do not parallelize

the training. The training lasts from 1000 to 1 million episodes in the literature [161,189]. For

training 32 agents, we used 32 CPU cores and the Python library MPI [211].

7.2.3 Simulation parameters

Compared to Chapter 6, we increase the calculation time of the solver that computes

the deformation of the simulated SO by adding a waiting time of 30 s to have more precise

deformation results. We also change the 3D size of the deformation boxes to adapt them to the

new environment configuration. We settle all the values of all the other simulation parameters
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to the prescribed values in Chapter 6. We still use PyBullet as the simulator’s physics engine to

train our agent. The simulator’s physics engine uses the FEM method [212] to simulate the SO,

and we kept the values of its mechanical parameters as they were in Chapter 6.

We created three databases. Each database was created by moving both arms in their

corresponding deformation box to deform the object, and we recorded those deformations to

use them as desired positions Pd in the training and the testing phase. The 3D size of the

deformation boxes varies from one database to another. Figure 7.2 shows the small, medium,

and large boxes that have the same 3D size for both arms. The small box size equals 0.15 m on

the x-axis, 0.5 m on the y-axis, and 0.3 m on the z-axis. The medium box size equals 0.15 m on

the x-axis, 0.6 m on the y-axis, and 0.4 m on the z-axis. The large box size equals 0.2 m on the

x-axis, 0.8 m on the y-axis, and 0.5 m on the z-axis. The large box 3D size is equal to the 3D

size of the workspace of the robotic arms. The small boxes generate the small database, which

contains 1000 deformations. The medium boxes are used to generate the medium database,

which includes 1000 deformations. The large boxes generate the large database, which has

1000 deformations. The small database is used for the training, and all databases (i.e., small,

medium, and large databases) are used for the testing.

Figure 7.2: 3D boxes of different sizes are used for database generation. Each robot has its own
deformation box. (A) The small boxes (in red) are used to generate the small database. (B)
The medium boxes (in red) are used to generate the medium database. (C) The large boxes (in
red) are used to generate the large database.

7.3 Experiments

This section presents our experimental results in simulation for all conducted experiments.

Since training the agent using a small database and testing it using a larger one gave the best

results in Chapter 6, we followed the same procedure in this chapter.

We trained the agent (i.e., both Panda arms) using the small database to extract the desired

deformations, i.e., the desired positions Pd of the mesh nodes. We have done two trainings to

control: three mesh nodes, and five mesh nodes. We used a maximum distance error threshold

of 0.05 m. As mentioned in the previous section, the training was parallelized: 32 agents were

trained each for 81 episodes, leading to having 2592 episodes in total. During the training, the
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environment was reset to the initial configuration (both robots and the object returned to their

initial position) after each episode. Figure 7.3 shows the average reward obtained by the 32

agents in each episode when controlling three mesh nodes, and five mesh nodes. As we can notice

from Figure 7.3, there is no need to smooth the learning curves, as in the literature [161,189].

This is thanks to the stability of the learning due to its parallelization.

Figure 7.3: Average reward obtained by the 32 agents in each episode when controlling three
mesh nodes and five mesh nodes.

Figure 7.4: Example of the robot deforming the SO: three mesh nodes reach their desired
positions with a maximum distance error threshold of 0.05 m.

For the testing phase, all the results are calculated for 1000 testing episodes with 30 steps,

i.e., the agent can take a maximum of 30 actions to achieve the deformation. We test the two

trainings for a maximum distance error threshold of 0.05 m and 0.03 m. We evaluate them using

the small, the medium, and the large databases to extract the desired deformations. We assess

92



Chapter 7 Dual-arm agent manipulating a DLO using DRL

them finally with and without reinitializing the environment. All these results are presented

in Table 7.1. In Table 7.1, the column “done” indicates the percentage of the agent’s success

to achieve the desired deformations. The percentage is calculated on the 1000 episodes with

30 steps. The “Best” column reveals the minimum distance error obtained within the 1000

episodes.

Mesh nodes
number

Database Testing error
threshold (m)

Done
(%)

Mean average distance error ±σ
(m)

Best
(m)

With
reinitialization

3 Small 0.05 91.7 0.03859 ± 0.01166 0.01113

0.03 73.6 0.03021 ± 0.01334 0.01052

Medium 0.05 97.2 0.03822 ± 0.01101 0.00998

0.03 77.6 0.02860 ± 0.01214 0.01009

Large 0.05 84.1 0.04270 ± 0.01438 0.01254

0.03 58.2 0.03568 ± 0.01738 0.00891

5 Small 0.05 67.3 0.04939 ± 0.01863 0.01189

0.03 34.8 0.04656 ± 0.02078 0.01286

Medium 0.05 72.1 0.04964 ± 0.01787 0.01733

0.03 37.4 0.04401 ± 0.02202 0.010973

Large 0.05 60.1 0.05718 ± 0.02636 0.02584

0.03 33.7 0.05365 ± 0.02934 0.01356

Without
reinitialization

3 Small 0.05 84.2 0.04584 ± 0.02475 0.01190

0.03 67.3 0.03604 ± 0.02491 0.01104

Medium 0.05 90.2 0.04433 ± 0.02866 0.01325

0.03 62.3 0.03243 ± 0.02566 0.01120

Large 0.05 70.8 0.06176 ± 0.03656 0.02119

0.03 52.1 0.04543 ± 0.03835 0.01405

5 Small 0.05 65.3 0.04978 ± 0.01887 0.01293

0.03 31.3 0.04784 ± 0.02247 0.01222

Medium 0.05 69.2 0.05027 ± 0.02060 0.02142

0.03 35.9 0.04691 ± 0.02286 0.00820

Large 0.05 59.4 0.05780 ± 0.02666 0.02094

0.03 29.8 0.05510 ± 0.02972 0.01266

Table 7.1: Results of all the conducted tests for the trainings using the small database.

Figure 7.4 presents an example of the dual-arm agent deforming a SO to reach

a new deformation on which the agent was not trained. Other deformations

are presented in the video available on https://drive.google.com/drive/folders/

15bbEugspTJfKj6urdxYxZlEC5PuQlps3?usp=sharing. As we can notice from Table 7.1, for

controlling three mesh nodes, the results are mostly as good as the results achieved by the

single arm while controlling two, four, or six mesh nodes (cf. Table 6.1). Sometimes there is

a slight reduction in performance, such as when we reinitialize the environment and use the
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same database and distance error threshold as in training, the single-arm agent achieves in

the worst-case scenario 99.1 % deformations. In contrast, when controlling three mesh nodes,

the dual-arm agent performs 91.7 % deformations. However, the dual-arm agent performs

better when combining the testing parameters changes. For example, when the single-arm agent

controls two mesh nodes on the large database with a distance error threshold of 0.03. In this

case, the robot achieves only 21.1 % deformations. In contrast, the dual-arm agent performs

58.2 % deformations when controlling three mesh nodes and achieves 33.7 % deformations when

controlling five mesh nodes.

The results prove that our approach keeps its generalizability whether we test it on a

single-arm or dual-arm agent. We trained the agent using a small deformations database with a

constant distance error threshold and reinitializing the environment after each episode. The

agent can be more precise in the testing phase than in training, as shown by our tests with a

lower distance error threshold. The agent achieves other deformations than those used during

training without needing to be retrained. The agent makes the SO reach the desired deformation

even if the object position is not reinitialized. The results presented in Table 7.1 show some

weakness when the dual-arm agent controls five mesh nodes. There is a significant reduction

in the performance compared to when the dual-arm agent controls three mesh nodes. Our

interpretation is that this is because controlling more mesh nodes is getting more complex. We

can notice from Figure 7.3 that the rewards received by the dual-arm agent when controlling

five mesh nodes are smaller than when controlling three mesh nodes. The solution to improve

the results is to train the dual-arm agent longer (in terms of the number of episodes) when it

controls more mesh nodes.

7.4 Conclusion

In this chapter, we tested our control approach on a dual-armed system. We changed the

reward function and calculated it as the maximum Euclidean distance between the current

positions of the selected mesh nodes and their desired positions. We also left the simulator to

calculate the deformation of the DLO for a longer time. We made these modifications to increase

the dual-arm agent’s performance when combining the changes in the testing phase parameters.

Indeed, when the single-arm agent was controlling, for example, two mesh nodes on the large

database with a distance error threshold of 0.03, it achieved only 21.1 % deformations. In

contrast, the dual-arm agent performs 58.2 % deformations when controlling three mesh nodes

and achieves 33.7 % deformations when controlling five mesh nodes. The agent can deform the

SO starting from a different initial position and end up with a different desired shape without

relearning. We verified this by training the agent on a small deformations database and testing

it on larger ones.
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8.1 Summary and conclusion

The rapid growth in demand for service robot applications in the home or industries has

raised interest in Human-Robot Collaboration (HRC) during the past several years. Therefore,

it is crucial to make robots endowed with pertinent abilities. Several effective robots with

sophisticated proprioception sensing and actuation control have been created. Nevertheless,

these robots still lack sufficient autonomy to work effectively with people.
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8.1.1 HRC classifications

Much research has been conducted to improve the autonomy of robots. We have reviewed

the most relevant of them in Part I. In Chapter 1, we started by presenting how HRCs can be

classified. Robots’ decisional autonomy can be increased by classifying the HRCs based on their

similitudes. One more autonomous robot can take the place of two robots that should have

comparable aptitudes and carry out similar tasks.

8.1.2 Main components required to set up a HRC

Another way to enhance the robots’ decisional autonomy is to improve one of the main

components required to set up a HRC: perception, Decision-Making (DM), motion execution,

and evaluation. In the remaining of Chapter 1, we introduced them briefly. The perception

comprises speech recognition, object detection, location recognition, posture recognition, and

human intention detection. Trajectory planning includes determining the optimal trajectory for

carrying out the robot’s action. A suitable controller is necessary for low-level control because

it enables the robot to move precisely into the desired position. The DM allows the robot to

select the best actions to make by taking into account the task, the environment, the previous

actions of the agents (humans and other robots), and the performance metrics that the agents

are trying to maximize to optimize collaboration. The HRC evaluation is typically based on

performance metrics to determine how beneficial the collaboration is for human agents. We

can consider as performance metrics the task duration, human posture, task accuracy, robot

velocity, robot’s dexterity, etc.

8.1.3 Robot’s DM process

In this thesis, we aim to improve the HRC by maximizing the benefits of collaboration for

human agents. Enhancing the robot’s perception and control approaches is one way to do this.

The other is to improve the robot’s DM process by taking performance metrics into account.

We favor using the second way because it enables us to optimize collaboration at a higher level

by taking into account various metrics even more because the robot’s perception and control

may be integrated into the robot’s DM process. DM techniques are used to make robots able

to adapt themselves to humans while accomplishing a task in collaboration. A DM process is

made of three main parts:

• A DM method: models the relationship between the agents, the actions, the environment,

and the task.

• A DM strategy: is the policy of choosing actions based on the value of their reward

calculated by the reward function.

• A reward function (or utility function): calculates a reward for each action.
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In chapter 2, we reviewed the DM methods, DM strategies, and utility functions used within

the robot’s DM process in the literature to place our contributions with respect to them.

8.1.4 Our framework for optimizing the HRC

This thesis aims to increase the performance of HRC through the DM process of the robots.

A collaboration comprises human and robot agents working together to accomplish the task.

The objective of previous work in the area of HRC is to adapt the robot to human behavior to

perform a task without taking into account how well the interaction unfolds. Some previous

studies provide specialized frameworks to enhance the HRC performance by taking into account

fixed performance metrics that are difficult to be modified within their architectures. Unlike

the state-of-the-art frameworks, the one we developed and presented in Chapter 3 can easily

handle changing performance metrics from one case scenario to another. Our framework treats

HRC as a constrained optimization problem with a utility function (or reward function) that

is divided into three major components. Firstly, a reward assesses the performance of the

collaboration, and it is the only part that is altered when modifying the performance metrics.

It allows for control over how the interaction proceeds and ensures that the robots’ behaviors

will be directly adjusted to those of the human agents involved in the collaboration. Secondly, a

constraint specifies how to complete the task. Thirdly, a set containing the robots’ physical

abilities. Accordingly, the utility function may be designed to enhance the robot’s dexterity in

manipulating objects.

8.1.5 First application of our framework

Firstly, we tested this framework through an assembly task. For this application, the human

agent was collaborating with the Nao robot. This robot has great manipulation limitations (its

motions are inaccurate) that can hardly be enhanced. That is why we focused the reward function

on improving the collaboration performance by changing the performance metrics considered

in it without trying to enhance the robot’s manipulation dexterity. We were optimizing the

collaboration based on several performance metrics, such as the time to completion of the

task and the number of human errors. We were doing that independently of the human agent

behavior.

We carried out experiments in real and simulation. By using our proposed utility function

instead of the state-of-the-art utility function, we improved the experiment time up to 66.7 %.

Theoretically, this improvement can reach a value close to 100 %. We also got a percentage of

human errors reduction up to 50.6 % by considering the predicted probability that the human

makes errors for optimizing the time to completion. From these conducted experiments, even

though we were able to optimize the collaboration, the improvement was restrained because the

abilities of collaborative robots are very limited, especially Nao. It was unable to do the pick
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and place task adequately. To further improve the optimization of the HRC performance, we

need to increase the robot’s manipulation dexterity.

8.1.6 Second application of our framework

Secondly, we focused on enhancing the robot’s manipulation dexterity while it performed a

more complex task, such as a Soft Object (SO) manipulation task. To the best of our knowledge,

no work involving the co-manipulation of a SO by a human-robot collaborative team has been

performed using Deep Reinforcement Learning (DRL). Our thesis perspective lies in testing

our framework on such applications. Chapter 5 presents the background on SOs manipulation

(especially the deformable linear objects) and the DRL approaches we used.

Since this application is highly challenging, we divided it into four steps. The first one is

to make the robot able to deform the SO thanks to a DRL approach. In Chapter 6, we tested

our DRL control approach on a single robotic arm. The results prove that our approach can

generalize the initial and final desired deformation of the SO more easily than the existing ones

in the literature. The second step consists of applying our control approach to a dual-arm

robotic agent that deforms the SO. The conducted tests in Chapter 7 prove that the approach

can generalize the initial and final desired deformation as well as when it was tested on a

single-arm robot.

The next section introduces how we plan to manage the last two steps in our future work.

The last two steps consist of replacing one of the robotic arms with a human agent, then

performing tests in real, and optimizing the collaboration based on some performance metrics.

8.2 Future work

Our perspectives are to accomplish the last two steps required to test our framework on a

co-manipulation task involving deformable objects. For this, we have to test our DRL control

approach in real for the single-arm and the dual-arm robot. Then, we should adjust our DRL

agent to make it able to consider the human agent’s behavior. Finally, we will have to test the

DRL agent in real while it performs that task with a human agent.

8.2.1 Sim-to-real transfer for the single-arm and the dual-arm robot

As stated in Chapter 6, our main problem with achieving a sim-to-real transfer is that the

direction of the deformation of the SO is different in reality and simulation. The disparity

between the simulation and reality should be slight. Otherwise, the process will no longer be

Markovian, making the agent’s learning incorrect. According to our understanding, it is caused

by the singularity of the SO initial position in the environment. In fact, when the episode

is initialized, the robot grasps the SO that is vertically positioned. This position is singular

98



Chapter 8 General conclusion and Perspectives

because, in the simulated tests, the object bends in a specific constant direction when the robot

presses it vertically. In contrast, in real experiments, different objects will bend in different

directions because of the object’s inherent plasticity.

To avoid singular positions, we suggest orienting the gripper in some direction before moving

the gripper tip vertically. We put the gripper tip in a predetermined initial orientation when the

episode is initialized. We ran simulated tests and discovered that by adding this extension, the

results are as good as those of the original environment. Sometimes the outcomes are even better,

particularly when the distance error threshold is lower during testing than during training. For

instance, we controlled four mesh nodes during the testing phase with an average distance error

threshold of 0.03 m (while in the training phase, it was equal to 0.05 m). Using the extension, the

robot could execute 93 % of the deformations while it only achieved 88.7 % of the deformations

using the original approach. To ensure this solution is valid, this extension should also be tested

in real. We are currently setting up the real platform to perform those tests. A video of some

successful first tests is available on https://drive.google.com/drive/folders/17LCKQBX_

TKwwtWVKPWQ1EPDyY16N6HFo?usp=sharing. We plan to evaluate this solution further, integrate

the results into a paper and submit it to an international journal.

8.2.2 Collaborating with the human agent

To perform this step and make the robot collaborates with the human agent, the human

agent’s behavior should be included in the simulator. Since predicting a human agent’s behavior

is challenging, we can use a multi-agent solution instead. Some studies have focused on Multi-

Agent Deep Reinforcement Learning (MADRL) [164–166] approaches to cope with this problem.

The MADRL approaches deal with multiple agents that share the same environment [165] but

behave independently. The idea behind these approaches is that each agent has to know the

actions of the others and their impact on the environment to collaborate with them [166]. To

apply this solution to our HRC application involving the manipulation of SO, we will have

to consider as individual agents both Panda arms. The first Panda arm will represent the

robot, and the second one will represent the human. Then, the human agent behavior will be

approximated by an individual learning robotic agent. The use of these techniques could be

valid for our application, but to confirm that, we will have to test them.

8.2.3 Evaluating the DRL agent through a real co-manipulation task

At last, we will need to integrate some performance metrics in the reward function to optimize

the HRC performance and evaluate if the optimization is higher than the one obtained within

our first application (i.e., the assembly task). As performance metrics of the co-manipulation

task, we can consider the following metrics: the time to achieve the deformation, the accuracy of

the reached deformation, the robot’s dexterity, and the robot’s velocity to adapt to the human.
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Appendix A

Puzzles from the Camelot Jr. game

In this appendix, we present all the puzzles from the Camelot Jr. game that we used in

Chapter 4. Puzzles A and B are those we used to make sure that the human participants

understood the gameplay.
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Figure A.1: Puzzles from the Camelot Jr. game used in Chapter 4.
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Simulation results of Section 4.6.4

Table B.1 presents the numerical values of the percentage of time improvement and the

reduction of the number of human errors for all the figures presented in Section 4.6.4.
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Percentage of time improvement Percentage of human errors reduction
I1, I2, and I3 values Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10

I1 = 0, I2 = 0.1, and I3 = 0.9 0.0 0.0 7.09412331431 4.37067607062
I1 = 0, I2 = 0.2, and I3 = 0.8 0.0 0.0 12.6336858252 7.8020796966
I1 = 0, I2 = 0.3, and I3 = 0.7 0.0 0.0 16.556882222 10.4704561576
I1 = 0, I2 = 0.4, and I3 = 0.6 0.0 0.0 19.2303631915 13.3638679771
I1 = 0, I2 = 0.5, and I3 = 0.5 0.0 0.0 22.3643444888 15.4993421616
I1 = 0, I2 = 0.6, and I3 = 0.4 0.0 0.0 24.8542177267 17.9408050283
I1 = 0, I2 = 0.7, and I3 = 0.3 0.0 0.0 28.4374851075 19.6044166944
I1 = 0, I2 = 0.8, and I3 = 0.2 0.0 0.0 31.2453571429 22.1412554113
I1 = 0, I2 = 0.9, and I3 = 0.1 0.0 0.0 29.2866666667 22.7585714286
I1 = 0, I2 = 1, and I3 = 0 0.0 0.0 0.0 0.0

I1 = 0.1, I2 = 0, and I3 = 0.9 0.0 0.0 17.5302972429 7.33482163197
I1 = 0.1, I2 = 0.1, and I3 = 0.8 0.0 0.0 19.2143318311 10.5479301203
I1 = 0.1, I2 = 0.2, and I3 = 0.7 0.0 0.0 21.3374721068 14.0052043345
I1 = 0.1, I2 = 0.3, and I3 = 0.6 0.0 0.0 23.5786203979 16.5280674286
I1 = 0.1, I2 = 0.4, and I3 = 0.5 0.0 0.0 26.7249188197 18.5858323843
I1 = 0.1, I2 = 0.5, and I3 = 0.4 0.0 0.0 27.5937682456 20.9918095099
I1 = 0.1, I2 = 0.6, and I3 = 0.3 0.0 0.0 28.9937657713 22.1913226588
I1 = 0.1, I2 = 0.7, and I3 = 0.2 0.0 0.0 32.0019444444 22.9278030303
I1 = 0.1, I2 = 0.8, and I3 = 0.1 0.0 0.0 34.205 23.5061904762
I1 = 0.1, I2 = 0.9, and I3 = 0 0.646808142428 0.441773745339 0.0 0.0
I1 = 0.2, I2 = 0, and I3 = 0.8 0.0 0.0 25.4460206798 12.376411145
I1 = 0.2, I2 = 0.1, and I3 = 0.7 0.0 0.0 25.6904326925 15.6962303954
I1 = 0.2, I2 = 0.2, and I3 = 0.6 0.0 0.0 27.5106709889 18.315465336
I1 = 0.2, I2 = 0.3, and I3 = 0.5 0.0 0.0 30.0794412809 20.4125719276
I1 = 0.2, I2 = 0.4, and I3 = 0.4 0.0 0.0 30.8272285354 22.0221180209
I1 = 0.2, I2 = 0.5, and I3 = 0.3 0.0 0.0 31.9211207311 24.9664681615
I1 = 0.2, I2 = 0.6, and I3 = 0.2 0.0 0.0 34.119047619 24.4444642857
I1 = 0.2, I2 = 0.7, and I3 = 0.1 0.765528401311 0.0 0.0 27.6111904762
I1 = 0.2, I2 = 0.8, and I3 = 0 2.4788012545 1.80659141302 0.0
I1 = 0.3, I2 = 0, and I3 = 0.7 0.0 1.91789786313 30.2540826341 16.6733556418
I1 = 0.3, I2 = 0.1, and I3 = 0.6 0.0 0.0 30.7411696561 19.7313028361
I1 = 0.3, I2 = 0.2, and I3 = 0.5 0.0 0.0 31.3673661689 21.5925174216
I1 = 0.3, I2 = 0.3, and I3 = 0.4 0.0 0.0 33.7247655123 23.7318043068
I1 = 0.3, I2 = 0.4, and I3 = 0.3 0.0 0.0 34.3449001924 23.9794936545
I1 = 0.3, I2 = 0.5, and I3 = 0.2 0.0 0.0 36.4016269841 26.2835119048
I1 = 0.3, I2 = 0.6, and I3 = 0.1 2.77628815301 1.46088929863 36.7869047619 24.7346428571
I1 = 0.3, I2 = 0.7, and I3 = 0 5.6292792232 4.03759880367 0.0 0.0
I1 = 0.4, I2 = 0, and I3 = 0.6 0.0 0.0 36.3891268668 20.3970746112
I1 = 0.4, I2 = 0.1, and I3 = 0.5 0.0 0.0 35.2710778111 22.4513601676
I1 = 0.4, I2 = 0.2, and I3 = 0.4 0.0 0.0 35.8305131674 25.1917275086
I1 = 0.4, I2 = 0.3, and I3 = 0.3 0.0 0.0 36.4988095238 26.7846236171
I1 = 0.4, I2 = 0.4, and I3 = 0.2 2.97937356761 0.0 37.8678571429 26.1883928571
I1 = 0.4, I2 = 0.5, and I3 = 0.1 6.8298290148 3.67128494973 35.0916666667 21.646547619
I1 = 0.4, I2 = 0.6, and I3 = 0 10.0581040567 6.91767350379 0.0 0.0
I1 = 0.5, I2 = 0, and I3 = 0.5 0.0 0.0 38.5427888223 22.5377313961
I1 = 0.5, I2 = 0.1, and I3 = 0.4 0.0 0.0 39.8677200577 25.6673357198
I1 = 0.5, I2 = 0.2, and I3 = 0.3 2.5889362939 0.0 40.2805687831 28.5753607504
I1 = 0.5, I2 = 0.3, and I3 = 0.2 7.56507185318 2.4071413430 38.0336309524 21.5879166667
I1 = 0.5, I2 = 0.4, and I3 = 0.1 12.187798206 7.11099379702 41.565 22.1403571429
I1 = 0.5, I2 = 0.5, and I3 = 0 15.7060720797 11.0874137267 0.0 0.0
I1 = 0.6, I2 = 0, and I3 = 0.4 0.0 0.0 41.0730555556 25.1399181374
I1 = 0.6, I2 = 0.1, and I3 = 0.3 8.17205250781 0.0 42.012965368 28.6511640212
I1 = 0.6, I2 = 0.2, and I3 = 0.2 14.1780122742 5.64235894103 43.109047619 21.2425054113
I1 = 0.6, I2 = 0.3, and I3 = 0.1 18.8995795602 11.1593671564 45.3266666667 24.2171428571
I1 = 0.6, I2 = 0.4, and I3 = 0 23.2260934025 15.568227852 0.0 0.0
I1 = 0.7, I2 = 0, and I3 = 0.3 17.2439908187 3.33567251462 44.296547619 18.6905624931
I1 = 0.7, I2 = 0.1, and I3 = 0.2 22.4988118634 10.0605063426 45.0121428571 20.8104816017
I1 = 0.7, I2 = 0.2, and I3 = 0.1 27.4951742932 15.4641925539 43.6866666667 21.2117857143
I1 = 0.7, I2 = 0.3, and I3 = 0 31.8854548846 21.023549533 0.0 0.0
I1 = 0.8, I2 = 0, and I3 = 0.2 33.0590564877 14.5036859249 44.6876190476 22.0960714286
I1 = 0.8, I2 = 0.1, and I3 = 0.1 37.9880475163 20.7778656126 45.2483333333 22.3210714286
I1 = 0.8, I2 = 0.2, and I3 = 0 41.9390153589 26.6215414675 0.0 0.0
I1 = 0.9, I2 = 0, and I3 = 0.1 49.8353835563 26.317921026 50.5583333333 21.8939285714
I1 = 0.9, I2 = 0.1, and I3 = 0 53.3069306931 33.3469782673 0.0 0.0
I1 = 1, I2 = 0, and I3 = 0 66.6666666667 40.0 0.0 0.0

Table B.1: Time improvement percentage and human errors reduction percentage obtained for
all the figures presented in Section 4.6.4.
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M. Leming, Y.-D. Zhang, J. R. Álvarez-Sánchez, G. Bologna, P. Bonomini, F. E. Casado,

D. Charte, F. Charte, R. Contreras, A. Cuesta-Infante, R. J. Duro, A. Fernández-Caballero,
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[105] K. Sörensen and F. Glover, “Metaheuristics,” Encyclopedia of Operations Research and

Management Science, vol. 62, pp. 960–970, 2013.
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[159] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-Jiménez,
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