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Abstract— We present a robotic embodiment experiment
based on real-time functional Magnetic Resonance Imaging
(rtfMRI). To our knowledge, this is the first time fMRI is used
as an input device to identify a subject’s intentions and convert
them into actions performed by a humanoid robot. The process,
based on motor imagery, has allowed subjects located in Israel
to control a HOAP3 humanoid robot in France, experiencing
the whole experiment through the eyes of the robot.

I. INTRODUCTION

This work takes place in the context of the VERE
project1, a European research project that aims at dissolving
the boundary between the human body and surrogate
representations in immersive virtual reality and physical
reality. By dissolving the boundary we mean that the
subject is expected to have the illusion that his surrogate
representation is his own body, and behave and think
accordingly. This may help disabled humans to control
an external device just by thinking, without any bodily
movement being involved. As illustrated in Figure 1, our
aim was to provide a subject located in Israel with the most
intuitive thought-based control of a robotic avatar in France.
To reach this goal, we have decided to focus on motor
control, using an rtfMRI to detect the users movement
intentions and translate them into actions performed by a
HOAP3 humanoid robot. To our best knowledge, this pilot
study is the first experiment of this type.

II. PREVIOUS WORKS

Telerobotics is the technology that allows a human
operator to steer robots at a distance. Telerobotic control
strategies have evolved from the classical master-slave
control to advanced supervisory control. Shared autonomy
and the sophistication of the robotic control allows a
telerobot to be steered by classical and modern input
devices (such as keyboard, mouse, eye tracker, voice
recognition systems, etc.), or through virtual reality
functional intermediary [1]. But many recent works also
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Fig. 1. Robotic Embodiment: General principle of data processing and
experiment related tasks.

emphasize the possibility of using brain-computer interfaces
(BCIs). BCIs allow a human to control a computer or a
mechatronic device just by thinking, without any body
movement being involved. While contemporary BCI
systems are far from the interfaces imagined by Hollywood
in movies such as Avatar2 or Surrogates3, there has been
some progress made and a surge of interest in the last few
years [2].

Most BCI systems intended for humans rely on the
measurement of electroencephalogram (EEG) recorded from
the scalp. BCI-controlled robots have been demonstrated
using mainly three major EEG-based BCI paradigms: the
steady state visually-evoked potential (SSVEP), the P300
wave, and motor imagery.

In SSVEP, a flickering visual stimulus is displayed to the
subject. When the retina is excited by a signal ranging from
3.5Hz to 75Hz, the brain generates electrical activity at the
same frequency of the visual stimulus, which can be detected
in the EEG signal. SSVEPs are highly interesting for robot
control due to their simplicity, their superior signal-to-noise
ratio, and their high decision rate. Previous works include
its use in the control of both mobile robots, e.g. [3][4],
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manipulators, e.g. [5] and recently, humanoids [6].

The P300 wave is an event-related potential (ERP)
that appears 300ms after an infrequent task-related event.
This ERP is now commonly used in BCI systems due
to its reliability: the waveform is easily and consistently
detectable, with little variation in measurement techniques.
Even though the bitrate (i.e. the amount of commands which
are sent to the external object in a second) is typically lower
than SSVEP, it is still a reliable BCI system, included in
many robotic control systems, see examples in [7] [8] [9]
or [10].

Because they rely on visual or auditory stimuli, both
SSVEP and P300 can be compared to a classical eye-
tracking system in terms of input interface: they provide
the same set of functionalities to the user and suffer from
the same limitations. Mostly, the mapping between the user
intentions and the functionality is arbitrary, in contrast to
what we would expect from a “thought-based interaction
paradigm.

Motor imagery has also been used for EEG-based BCI.
Motor imagery is a mental process by which an individual
rehearses or simulates a given action. As explained in [11],
imagination of movement evokes brain networks that are
similar to the networks evoked by real execution of the
corresponding physical movement. A series of studies
were carried out with motor-imagery based navigation
of highly-immersive virtual reality [12][13][14] including
experiments with a tetraplegic patient [15]. Motor-imagery
requires more training and the bitrate is lower than P300
and SSVEP, but it is arguably based on a more intuitive
mapping between the mental patterns and the resulting
action taken by the system.

Since EEG is recorded from the scalp it suffers from
high levels of noise and low spatial resolution as compared
with other methods for recording brain activity. fMRI also
has several drawbacks: it is expensive, less accessible, and
has a low temporal resolution and a built-in delay because
it is based on metabolic changes rather than on direct
recording of electrical activity in the brain. However, due
to its superior spatial resolution covering the whole brain
simultaneously it holds much promise for completely new
types of control paradigms.

We could find only one research project in the state-of-
the-art presenting fMRI as an input device for a robotic
hand control, and this was not applied to the embodiment
problem. This work was performed by Honda Research
Institute and Advanced Telecommunications Research
(ATR) and concerned the control of a robotic hand with
three predefined gestures; this non-published result was
reported by [16].

Other Studies [17][18][19] used machine learning methods

to decode brain patterns. In traditional fMRI experiments,
we collect data from a subject’s brain and have abundant
time after the experiment is over to analyze the brain data.
Additionally, algorithms do not need to be optimized for
speed and for memory usage. Conversely, when dealing
with real-time analysis and prediction, we need to use fast
algorithms that can manipulate large datasets in fractions
of a second. In our case the time between TRs, which is
the time between our inputs, is 2s. In the current real-time
experiments only three average raw values are calculated for
the prediction, so one of the advantages of the simplicity of
our method is its computational efficiency.

III. FMRI-BASED BCI

Our system is able to automatically identify a subjects
intention based on motor imagery in real-time, classify brain
activation patterns, and convert them into robotic actions
performed by a small-size humanoid robot. The aim is to
allow intuitive BCI control based on brain activity.

We present a set of preliminary successful BCI sessions
preformed in an fMRI scanner. In this experiment subjects
teleoperated a robot located in France from an fMRI scanner
based in Israel. Each session lasted approximately 10–13
minutes.

A. The System

Imaging was performed on a 3T Trio Magnetom
Siemens scanner, and all images were acquired using a 12
channel head matrix coil. Three-dimensional T1-weighted
anatomical scans were acquired with high resolution
1-mm slice thickness (3D MP-RAGE sequence, repetition
time (TR) 2300ms, TE 2.98ms, 1mm3 voxels). For
blood-oxygenation-level-dependent (BOLD) scanning, T2*-
weighted images using echo planar imaging sequence (EPI)
were acquired using the following parameters: TR 2000ms,
TE 30ms, Flip angle 80, 35 oblique slices without gap, 20
towards coronal plane from Anterior Commissure-posterior
Commissure (ACPC), 3×3×4 mm voxel size, covering the
whole cerebrum.

The data coming from the fMRI scanner is saved as
Dicom files4, and processed by Turbo BrainVoyager software
(TBV) [20], which is a real-time processing, analysis, and
visualization application that accepts input from an fMRI
scanner. After processing the data, TBV saves the average
raw data values for each region of interest (ROI) selected
by the operator at each measured time point.

The fMRI scanner is located in Rehovot, Israel, and
the robot in Béziers, France. The flow of commands was
sent to the robot through a User Datagram Protocol (UDP)
connection and the video flow was received through another
network flow. The round trip time from transmission to

4http://medical.nema.org/



reception of data (ping) between Israel and France was
between 100 to 150 milliseconds.

B. The ROI-based paradigm

Figure 2 depicts an image from TBVs view screen. The
three regions (from left to right) represent the three areas
correspondingly: left hand, legs and right hand, in the
primary motor cortex, and are delineated by a left vs. right
hand contrast as well as a legs vs. baseline contrast, using
a general linear model (GLM) analysis.

A single experiment run is divided into three parts. In
the first part, the data-gathering phase, the subject is given
pseudo random motor-imagery instructions. The entire
session is recorded for the purpose of finding ROIs. An
ROI is an area in which the brain was more active in one
experimental condition compared to the other condition.
The operator places the ROIs inside the most saturated
regions in yellow and blue where the event-related average
signal for the current ROI is significantly higher than the
other two ROIs, as seen in Figure 2. Figure 3 depicts the
time-course of the contrast.

In the second part we instruct the subject to rest for one
minute; this serves as a baseline resting period in which we
collect the mean values for each ROI, by calculating the
mean and standard deviation for each ROI for the entire
baseline period.

In the third and last part, the task stage, we instruct the
subject to imagine moving his limbs and collect the average
values from each ROI every two seconds. A prediction is
made using the Z-score formula: and is calculated for each
measured value by using the mean and standard deviation
from the baseline period:

z =
x−µ

σ
. (1)

where:

• x is the current measured average raw value in an ROI;
• µ is the mean raw value of the ROI in the rest period;
• σ is the standard deviation value of the ROI in the rest

period.

The prediction chosen is the class corresponding to the
ROI with the maximal Z-score value. The system then
transmits the prediction to the HOAP3 robot located in
France. Each ROI is mapped to a different action performed
by the subject, which in turn activates a pre-computed robotic
motion. Turning left, right or walking forward corresponds
to left-hand, right-hand or legs imagery of movement.

Fig. 2. An example of right-hand vs. left-hand contrast and legs vs. baseline
contrast, taken from one subject over the first stage of the experiment. Since
the contrast is very strong, even a simple classification based on the Z-score
formula, as described here, works on a single trial basis.

C. Experimental setup

This study is a follow-up to a previous exploratory study,
where a subject was able to control an avatar in a virtual
environment, rather than a physical robot, using the same
ROI paradigm [21]. In the study reported here we also used
the avatar as a feedback in the first experimental stage,
which was intended for defining three non-intersecting ROIs
per subject. The subjects saw a virtual environment with
an avatar standing in the bottom center of the space, and
were instructed to imagine themselves as the avatar. The
avatar would turn 90 degrees toward either the left or the
right, or would walk 2 seconds when facing forward. In
BCI we would like to achieve the most intuitive mapping
between thought patterns and the resulting interaction [12].
Imagining hands for motion direction and feet for forward
motion is not identical to the way you control your body
when walking, but it clearly intuitive and not arbitrary.

In the next step the subjects viewed a live video feed
through a camera located at the eyes of the robot. The
robot was located inside a 9.6 meters by 5.3 meters room in
France. They saw a technician who instructed them to move
left, right or forward using his hand gestures. The objective
given to the subjects in this experiment was to walk around
two obstacles in an “eight”-shaped course, in approximate
length of 1.5 meters. Each subject underwent between three
to seven test sessions each lasting 13 minutes, in which the
BOLD signal from the entire brain was measured every two
seconds. At the end of this period we calculated two values:
the mean signal and the standard deviation for the entire



rest period.

The third step included several task sessions, each session
lasting 12 minutes (360 triggers). The system sent a nominal
value to the robot every 2 seconds (corresponding to the
ROI with the maximal Z-Score). The left or right commands
initiated a thirty degrees turning sequence, and the forward
command initiated a two-step forward walking sequence,
both lasting between 8 and 14 seconds. The robot executed
commands only after completing the previous command,
i.e. many of the commands were ignored by the robot. In
practice, while each command was based on a two second
time window, the subjects focused on the same command
(left, right, or forward) for the time it took the robot to
perform the action.
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Fig. 3. An example of event-related averaging plot for left-hand ROI,
taken from one subject. This plot depicts the average hemodynamic response
evoked by the stimulus for an ROI over the first phase of the experiment.
X and Y axes represent the TR position corresponding to the beginning of
the event and the percentage signal change, respectively.

D. Limitations

One limitation concerns the ROI paradigm; using this
method it is only possible to identify coarse ROIs, but
it is impossible to identify more specific multi-voxel
brain patterns that may lead to identifying more complex
intentions; we are integrating such methods in our system
for future studies.

We have tested the system with both motor imagery and
motor movement; in the latter case subjects were instructed
to move their fingers and toes in order to move, rather
than the corresponding imagery tasks. In the case of motor
movement the event-related brain signal is very strong;

our experience indicates that any subject can perform the
task without any difficulties and with literally no training.
However, using motor imagery, the subjects need to be
trained for several two hour sessions, because it is harder
for them to find the right imagery strategy to activate the
motor regions. Once they found their optimal strategy, we
continue to use it in future sessions. For example, they
imagine tapping with either right or left hand to turn, and
imagine moving their feet back and forth to walk forward.

IV. GENERATION OF THE MOTION DATABASE FOR THE
ROBOT

The use of a motion database was already described for
a follower task with the HOAP-3 Robot [22]. In this paper
we use the method presented in [23] to generate motions
performing a sequence of contact stances and ensure the
balance and the physical limits of the robot. Contrary to
human-sized robots, HOAP-3 is a very stable robot so we
are free to execute those motions with a local joint control
loop, without using a balance stabilizer.

A. Motion optimization

As presented in [24], the goal is to generate motions that
minimize a cost function and ensure a set of constraints
relative to the balance and the limits of the robot and to the
properties of the desired motion (e.g. position of the foot).
In order to deal with the constraints classical optimization
techniques revert to time discretization, even if they may
produce unsafe motions where there are some constraint
violations between the instant of the time-grid [22]. In order
to avoid any constraint violation, this method considers a
time-interval discretization that decomposes the motion into
several intervals. We use a polynomial approximation over
each time interval of any state variables of the robot, in order
to easily take into account continuous inequality and equality
constraints [23].

B. Motion properties

We create a database of motions in order for the robot
to walk forward, turn to the left, or turn to the right. Each
motion is decomposed into several contact phases, i.e., a
lapse of time when no contacts are created or released. To
ensure continuity, every motions starts and ends with the
same posture. The turning motions are composed of five
phases to perform a rotation of thirty degrees, whereas
the walking motions are composed into nine phases and
produce steps of five centimeters each.

During the optimization processes, we take into account
the constraints regarding the balance, joint position, velocity
and torque limits, and minimize the following function that
produces a smooth and low-energy motion:

C(q) = a
∫ T

0
∑

i
Γ

2
i dt +b

∫ T

0
∑

i

...q i
2dt + cT (2)



with a = 1e−2, b = 1e−5 and c = 4, are the values we set
heuristically to have human like walking motion.

V. EXPERIMENTAL VALIDATION

Free choice scenarios allow for an experience of
performing a task in a relatively natural and continuous
mode, as opposed to trigger-based BCI experiences. A
limitation of free-choice scenarios is that it is impossible
to accurately measure success rates. In our experiment the
subject was always successful in performing the task in the
allocated time. Most trials were constructed so that time
allowed for errors; in the scenario the subject was able to
surround both obstacles by following visual instructions
made by the technician. We cannot quantify success rates
but it is clear that the probability of successfully completing
the task with chance-level control is infinitesimally small.

We have validated this control system through a set of
experiments where the subjects could steer the robot in
three directions (Right, Left, Forward). The study included
four right-handed participants, one male who performed
the experiment several times using either exclusively motor
imagery or motor movements, and three females who
performed the motor movements.

The participants were asked to perform one of the three
following missions:

• Free navigation: the user is allowed to visit the room
freely

• Seek and find: an operator shows an object to the robot,
then hides it. The subject has to navigate the room to
locate it.

• Follower: an operator indicates by gestures to the
robot the path that should be followed. This path was
shaped like an eight around two obstacles in order to
use all of the three basic movements.

The subjects gradually learned to control the robot during
the session. As explained earlier (Section III.D) it is difficult
to accurately assess BCI accuracy in free choice tasks.
We have estimated the accuracy of the same method with
an avatar-based experiment to be 100% for a two-class
task (right hand vs. left hand) and 93% for the three-class
task [21].

VI. CONCLUSIONS AND FUTURE WORKS

Our preliminary results indicate that subjects can learn to
control a robot using either motor imagery or movement,
classified by our system, in better-than-chance levels with
very little training. Our aim is at allowing subjects to
perform diverse tasks in the virtual or real environment,
using a natural mapping of mental patterns to functionality.
In the course of these studies, we intend to extend our
method to use machine-learning techniques, and to explore

how the sensation of agency and embodiment develop in
the context of such BCI experiences.
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