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Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plas-
monic structures. This suggests that in some cases, the Drude model should be replaced by more advanced
descriptions that take spatial dispersion into account, such as the hydrodynamic model. Here, we show that nonlo-
cality in the metallic response affects surface plasmons propagating at the interface between a metal and a dielectric
with high permittivity. As a direct consequence, any nanoparticle with a radius larger than 20 nm can be expected
to be sensitive to spatial dispersion, whatever its size. The same behavior is expected for a simple metallic grating
allowing the excitation of surface plasmons, just as in Wood’s famous experiment. Finally, we carefully set up a pro-
cedure to measure the signature of spatial dispersion precisely, leading the way for future experiments. Importantly,
our work suggests that for any plasmonic structure in a high-permittivity dielectric, nonlocality should be taken
into account. ©2019Optical Society of America
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1. INTRODUCTION

For more than a century now, Drude’s model [1], coupled to
Maxwell’s equations [2], has been able to describe very accu-
rately the optical response of metals, even for quite extreme
geometries [3–7]. Many advanced theories describing metal-
vacuum interfaces [8,9] have been developed during the second
half of the 20th century, especially with the development of
electron energy loss spectroscopy (EELS), which provided
experimental data to better ground theoretical discussions
[10–12]. These new approaches were able to take into account
complex phenomena, such as spatial dispersion or electron spill-
out, and allowed one to better understand the success of Drude’s
model. It turns out in fact that Drude’s theory is the zeroth order
approximation of all more advanced descriptions introduced
later on. All these studies, however, seemed to conclude that spa-
tial dispersion and spill-out have a limited impact [13–16] on
surface plasmons (SPs), such that optical experiments were not
likely to show any difference from Drude’s predictions [17–19].
Moreover, because most resonances in metallic structures can
actually be explained as cavity resonances of some sort for SPs, it
has become widely accepted that plasmonic resonances could be
very accurately described by Drude’s model. For decades, then,
there has not been any urge to adopt advanced descriptions of

the response of metals in plasmonics. Only in the case of metallic
clusters, due to the extremely small size, were spatial dispersion
and spill-out expected to play a significant role, requiring the
most advanced descriptions [13,20–22].

However, a recent experiment with film-coupled nanopar-
ticles showed that the frequency of the resonance of modes
that are localized in small volumes (on the order of 1 nm3) is
simply not correctly predicted by Drude’s model, whereas the
linearized hydrodynamic model [23] in its simplest formulation
(the Thomas-Fermi approximation) seemed to be accurate
enough. This is the case even with optical excitation and rela-
tively large metallic particles. This can be linked to the fact that
the small gaps between the nanoparticle and the metal support
a gap-plasmon—a guided mode that is particularly sensitive to
spatial dispersion because it has a very large wavevector [24–28],
whatever the frequency. This allows one to better understand
why small gaps, which are more and more common in plasmon-
ics [3,5,29–31], may require more advanced descriptions of the
metallic response. Furthermore, this explains why the hydrody-
namic model, despite its well-documented deficiencies [32], is
probably a good replacement for Drude’s model in plasmonics
[33,34]: high wavevector plasmonic modes enhance spatial
dispersion effects [26–28], but not the impact of the spill-out,
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especially since noble metals present a high extraction work. The
spatial dispersion that arises from the repulsion between free
electrons inside the metal is taken into account accurately by a
hydrodynamic model, which presents in addition the advantage
of being relatively easy to implement numerically [35–38].

Here, we show that the impact of spatial dispersion on the
SP propagating at the interface between a metal and a dielectric
is enhanced when the refractive index of the dielectric is large.
We show, as a direct consequence, that even large nanoparticles
can be expected to be sensitive to nonlocality and that, using a
grating coupler, it is theoretically possible to estimate the main
parameter of the linearized hydrodynamic model in a situation
where other more complex phenomena can be ruled out. We
underline that such a well-controlled setup differs strongly from
previous experiments that all involved chemically synthesized
nanoparticles [20,39–41] whose geometry cannot always be
fully controlled.

2. SURFACE PLASMON

In this first part, we study the influence of spatial dispersion on
a SP propagating along a metal-dielectric interface (especially
for dielectrics with high refractive indices). A SP can be seen as
current loops propagating beneath the surface of a metal. Such a
phenomenon is accompanied by an electromagnetic field in the
metal (with relative permittivity εm) and in the dielectric (with
relative permittivity εd), which is transversely evanescent in both
media due to the fact that its effective index neff =

kSP
k0

, where kSP

is the wavevector of the SP and k0 =
ω
c is the wavevector in vac-

uum, is always larger than the refractive index of the dielectric
medium.

First, neglecting losses, the dispersion relation can be
written as

neff =

√
εdεm

εd + εm
, (1)

where we assumed a simple Drude model εm = 1−
ω2

P
ω2 . In

this case, the curve of a SP has a horizontal asymptote at
ωSP =

ωP√
1+εd

. It is, however, unrealistic to neglect the losses

inside the metal because the frequency ωSP is usually in a wave-
length range, the UV, where the interband transitions make the
metal highly lossy. As a consequence, a bend-back can be seen
on the dispersion curve of the SP, which thus never reaches very
high wavevectors (see local dispersion curves in Fig. 1).

However, when the permittivity of the dielectric increases,
the frequency ωSP decreases. At the same time, losses due to the
interband transitions can be expected to be low enough as to
enable a support of high wavevector SPs. Such modes are more
likely to be sensitive to spatial dispersion [24].

In order to take nonlocality into account, we rely on the
linearized hydrodynamic model for the free electrons, already
introduced in previous works [35,43–48]. The electric current J
inside the metal is linked to the electric field E by

−β2
∇(∇ · J)+ J̈+ γ J̇= ε0ω

2
PË, (2)

where ωP is the plasma frequency, ε0 the vacuum permittivity,
γ the damping factor, and β the nonlocal parameter. The β
factor represents the increase in internal pressure in the electron

gas due to exchange interaction and Coulomb repulsion. There
are actually several theoretical expressions for this parameter
[49]. We rely on the experimental data available [39,40], which
consistently point to a value of β = 1.35× 106 m

s . Finally,
the electric current inside the metal can always be considered
as an effective polarization Pf due to the free electrons and is
then given by Ṗf = J. In that framework, the metal can then be
described as a nonlocally polarizable medium.

We use accurate material parameters [42] that allow a distinc-
tion between the response of the free electrons, which is subject
to spatial dispersion, and the response of bound electrons, which
can be considered to be purely local [50]. In the following, the
metal is always assumed to be silver, which is favorable since
silver is less lossy than gold. The total metal polarization reads
then P= Pf + Pb, where Pb = ε0χbE with χb being the local
susceptibility associated with the bound electrons. In order do
obtainχb, we fit the experimental data of silver permittivity with
a generalized dispersion model based on Padé series [51] (which
is sufficient to perform nonlocal time-domain simulations)
and subtract the local Drude contribution χf. Throughout this
work, we rely on the DIOGENeS [52] Discontinuous Galerkin
Time-Domain (DGTD) suite [37]. Finally, we consider addi-
tional boundary conditions that are both the most natural
(vanishing normal component of the polarization current J at
the metal boundary, thus forbidding free electrons to escape
the metal) and the most conservative (they reduce the impact of
nonlocal effects) [24]. Since the current is proportional to the
effective polarization in the metal due to the gas of free electrons,
this boundary condition, used all througout the present work,
can be written as Pf · n= 0 at the surface of the metal.

We first study the influence of nonlocality by considering the
dispersion relation of a SP propagating along a perfectly plane
dielectric-metal interface. The calculations done in [24] show
that this relation can be written as

km

εm
+

kd

εd
− i�= 0, (3)

where k j =

√
ε j k2

0 − k2
SP, j =m, d are the vertical compo-

nents of the SP wavevector, and � is the parameter including
β and thus taking nonlocality into account. Presuming �= 0
allows one to retrieve the usual dispersion relation for SPs, the
k j = k′j + ik′′j being here essentially imaginary (k′′j � k j ′ ). We
underline that the above expression is only apparently different
from [24] because we use the wavevectors k j directely in the

expressions instead of the κ j =

√
k2

SP − ε j k2
0 as done in [24].

The expression of� for the boundary conditions we use is

�=
k2

SP√
k2

SP +

(
ω2

P
β2

) (
1
χf
+

1
1+χb

) ( 1

εm
−

1

1+ χb

)
. (4)

As can be seen from Eq. (4), the parameter� is roughly propor-
tional to the square of kSP, which clearly indicates that the higher
the wavevector, the higher the impact of nonlocality. Figure 1
shows local and nonlocal SP dispersion curves for different
values of the dielectric permittivity εd ranging from 1 to 10. We
can easily see that, for a fixed frequency, an increasing εd pushes
the SP towards higher neff, and thus causes the SP to be more
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Fig. 1. Surface plasmon dispersion curves [see relation Eq. (3)]
along a single dielectric-Ag interface, assuming material parameters for
silver [42]. The effective index neff = is defined by kSP

k0
. The permittiv-

ity of the dielectric εd ranges from 1 (most left) to 9 (most right) with
a step size 2. The blue lines correspond to the local dispersion (�= 0)
and the orange ones to nonlocal dispersion (� 6= 0).

sensitive to nonlocality. The leftmost curve, obtained using air
as the dielectric (εd = 1), clearly shows that the effective index
neff is too small to show any impact of nonlocality. However,
after a certain εd value, the characteristic bend-back occurring at
the SP frequency ωSP disappears just when spatial dispersion is
taken into account.

This corresponds exactly to a recent theoretical study [25]
that shows that an artificial decrease in metallic losses can induce
exactly the same behavior on the dispersion curves of plasmonic
guided modes. This occurs when the impact of nonlocality
overcomes the influence of the metallic losses.

The impact of the dielectric’s permittivity overcomes the
one of losses for two reasons. First, as explained above, increas-
ing εd lowers ωSP and thus takes the frequency away from the
interband transitions. Additionally, a higher dielectric permit-
tivity directly gives to the SP a higher neff and thus enhances
the influence of spatial dispersion, leading to a large impact of
nonlocality even well belowωSP.

However, when the real part of the effective index shown
in Fig. 1 is especially high, the imaginary part is very large too,
making the mode impossible to excite. This means reaching
out for the highest wavevectors may not be the best strategy to
observe nonlocal effects.

We underline that, despite extensive studies on nanoparticles,
such a behavior of the SP has seemingly not been reported previ-
ously. Straightforwardly, this suggests that nonlocality will have
an impact on (i) the resonances of relatively large nanoparticles
of noble metals (with a diameter well above 20 nm, as they can
be considered as resonant cavities for the surface plasmon) and
(ii) SP grating couplers very similar to the canonical experiment
of Wood [53], provided the grating is buried in high-index
dielectrics.

3. NANOPARTICLES

The resonance of large metallic nanoparticles can be interpreted
as cavity resonances for the surface mode with a resonance con-
dition [54], which can be written as

2π R =m
λ0

neff
(5)

or simply as kSP =
m
R , where R is the radius of the particle. Such

a condition is strictly valid only (i) for a cylinder instead of a
sphere and (ii) if the curvature of the particle can be neglected,
which is almost never the case. However, this condition being
roughly valid even for spherical nanoparticles instead of cylin-
ders [54,55], it allows one to understand that if the wavevector
of the SP is influenced by nonlocality, the resonance frequencies
of a nanoparticle should be influenced as well, irrespective of
its size.

For decades now, the community has actually focused
on nanoparticles with a diameter much smaller than 20 nm
[20,41], hoping that enhanced nonlocal effects would take
place—since spatial dispersion is linked to supplementary pres-
sure terms in the description of electron gas [49,56]. However,
with very small nanoparticles, (i) other effects such as spill-out
[22,33,57,58] kick in, and (ii) the geometry of the nanopar-
ticles is not well controlled [20,41]. Given the relatively poor
agreement between experiments and the prediction of the
hydrodynamic model [41,59], it seems difficult to consider
the hydrodynamic model to be sufficient at such small scales. It
may even be a little bit early to introduce further improvements
of the hydrodynamic model [60] based on these results. The
simple analysis above suggests that larger nanoparticles buried in
a high-permittivity medium could actually be a better setup to
test the hydrodynamic model.

In order to further strengthen this analysis, we used Mie
theory [54,55] and adapted the formalism proposed by Ruppin
[61] for metallic cylinders, for which formula (5) is the most
relevant. We use the most realistic material parameters possible
[42] and the supplementary condition considered above for the
SP. This boundary condition, Pf · n= 0, leads to the following
relation [24]:(

E− (1+ χb)
β2

ω2
p
∇(∇ · E)

)
· n= 0, (6)

where n is the unitary vector normal to the surface of the metal.
When the field is decomposed on the cylindrical harmonics, the
Mie coefficients [61] are

an =

√
εd Jn(kd R)(J ′n(km R)+ αn)−

√
εm Jn(km R)J ′n(kd R)

√
εm H ′n(kd R)Jn(km R)−

√
εd Hn(kd R)(J ′n(km R)+ αn)

,

(7)

where

αn =

n2

km R2 Jn(kL R)Jn(km R)

−kL J ′n(kL R)+ (1+ χb)
β2

ω2
p
βn

(8)

and

βn = k3
L J ′′′n (kL R)+

k2
L

R
J ′′n (kL R)

−
kL

R2
(n2
+ 1)J ′n(kL R)+

2n2

R3
Jn(kL R) (9)

with km =
√
εmk0, kd =

√
εd k0, and

kL =

√
−
ω2

p

β2

[
1

1+ χb
+

1

χ f

]
. (10)
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(a)

(b)

Fig. 2. Local (blue) and nonlocal (orange) absorption for a cylinder
cross section of radius (from left to right) R = 10 nm, 50 nm, and
100 nm as a function of the impinging wavelength λ for a p-polarized
incident wave (H parallel to the cylinders) using (a) water or (b) TiO2

as dielectric. The theoretical blue shifts (for the maxima) are from left
to right 2.1 nm, 1.2 nm, and 0.9 nm in (a) and 9.3 nm, 6.0 nm, and
4.8 nm in (b).

We then compute the extinction cross section as

Ce =−
2

kd R

∞∑
n=−∞

<(an). (11)

Because expression (7) is numerically unstable when β tends to
zero, one has to take αn = 0 to find the local predictions using
the same formula.

We have computed the local and nonlocal response of
nanoparticles with different sizes when they are in water (as is
common) or in TiO2 (see Fig. 2). The latter is a good choice
to enhance the influence of spatial dispersion because of its
high refractive index. Its permittivity εTiO2 is described by a
generalized dispersion model fitted to experimental data corre-
sponding to thin films of TiO2 grown by atomic layer deposition
[62]. This results in a real part of the refractive index of TiO2

comprised between 2.25 and 2.5 over a wavelength spectrum
ranging from 2000 nm to 400 nm. The extinction coefficient is
on the order of 10−7.

In water, nonlocality has a noticeable impact only for a radius
approaching 10 nm, whereas in TiO2, nonlocality tends to
blue shift all the resonances of more than 4.8 nm in wavelength
even for a radius of 100 nm. We stress here that a high-index
dielectric is able to sufficiently enhance the magnitude of the
nonlocal effects to make it observable on the response of parti-
cles/cylinders five times larger than the ones usually considered
by the community. This should be enough to rule out any
other effect such as the spill-out, and with such a large size,
the geometry of the nanoparticles is better controlled—or the
nanoparticles could even be probed individually [55,59].

4. GRATING COUPLER

We now discuss the structure shown in Fig. 3(a), which is a
simple 1D metallic grating buried in a high-index dielectric

(a) (b)

Fig. 3. (a) Schematic representation of a grating coupler.
(b) Schematic representation of a SP propagating along a dielectric-
metal interface, taking the finite height of the dielectric into account.
The red dashed line illustrates the SP’s magnetic profile. While the
SP propagates along the dielectric-metal interface, the upper evanes-
cent tail extends into air, but the lower one does not extend into the
substrate, allowing one to neglect it in computations.

with infinite extent in the lateral directions. Normal incident
illumination is assumed from the top, and we recover the zeroth
reflected order for a broadband spectrum of the incident wave-
length. In such a simple configuration, many diffraction orders,
including evanescent ones, are excited.

For the m-th order, and since we consider only normal inci-
dence here, the coupling condition to the SP can be simply
written as

kSP =m
λ

dG
, (12)

where λ is the wavelength, m the diffraction order, and dG the
grating pitch. Such a relation is valid only for a very shallow
grating when the surface mode can be considered undisturbed.
It is equivalent to assuming that the spatial periodicity of the
grating is a multiple of the periodicity of the SP. Such a condi-
tion is proper to the periodicity of the structure [63] and thus
is expected to be valid whether spatial dispersion (which will
modify kSP) is taken into account or not. This allows us to find
the wavelengthλc,m for which the grating is able to excite the SP:

λc,m =
<(neff)

m
dG, (13)

where neff =
kSP
k0

is the SP effective index.
Each time this condition is satisfied, a dip due to the exci-

tation of a SP will appear in the reflectivity. Spatial dispersion
should cause blue shifts of the resonances with respect to a fully
local approach because the effective index is always smaller when
nonlocality is taken into account. We define this blue shift as the
positive quantity 1λc,m = λ

local
c,m − λ

nonlocal
c,m ∝ nlocal

eff − nnonlocal
eff .

As the different resonances correspond to different orders
being coupled to the SP, the corresponding wavevectors will
be different, and thus the impact of spatial dispersion will
change from one resonance to another. To better understand the
impact of nonlocality on the resonances, it is crucial to be able
to identify them, hence the interest in the relation Eq. (13). We
have thus taken the finite thickness of the dielectric layer into
account by computing the properties of the guided mode of the
non-corrugated structure [see Fig. 3(b)] using an open-access
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numerical tool [36,64]. Aiming for a proper interpretation of
the resonances, we have then carefully increased the depth of
the grating, in order to allow a thorough physical discussion (see
Fig. 5). We use rigorous coupled-wave analysis (RCWA) [65,66]
for these simulations.

A. Parameters of the Grating Coupler

1. Materials

Although we restrict ourselves to silver in the scope of this
work, we underline that gold or any other metal and even semi-
conductors [67] (claiming an equivalent electronic mean free
path [68]) could have been used and would have led to the
same conclusions. Again, in order to observe the largest pos-
sible effects, we consider TiO2 as a high-permittivity dielectric
with very low absorption. It could be possible to consider other
materials with an even higher refractive index, such as silicon for
instance. The losses of these materials would, however, force us
to consider higher wavelengths, further away from the plasma
frequency, where nonlocality has a smaller impact—but for
which their high refractive index could potentially compensate.

2. Thickness of theDielectric andMetallic Layer

We have taken hm = 150 nm for the thickness of the metallic
layer, thus being several times thicker than the skin depth and
ensuring that the substrate does not play any significant role.

The thickness of the dielectric hD layer is a distinctly more
crucial parameter. In order to excite a SP with the highest pos-
sible wavevector, a dielectric of the highest possible thickness
would be desirable. However, since the dielectric layer is finitely
thick, increasing hD leads to a higher number of classical guided
modes. That hinders a clear interpretation of the resonances or
renders it even impossible. Luckily, since we are considering the
excitation of high-wavevector guided modes that show a fairly
low vertical extension, a thickness of hD = 85.0 nm turns out to
be a good trade-off. No other guided mode than the SP exists for
this choice of hD in most of the spectrum.

Figure 4(a) shows the dispersion curve for a mode propagat-
ing at an air-TiO2-Ag interface for hD = 85 nm with or without
spatial dispersion. Obviously, the difference in the dispersion
curve of the SP at a TiO2-Ag interface is small. The impact of
nonlocality is clearly the same, and the bend-back disappears.

3. GratingPitch

Using the coupling condition Eq. (13) and the local and nonlo-
cal dispersion curves as shown in Fig. 4(a), a raw estimation of
the blue shift due to spatial dispersion can be made. Figure 4(b)
shows the expected blue shift for different diffraction orders and
sweeps over the grating periodicity dG. The higher the diffrac-
tion order, the higher the wavevector of the excited SP—which
leads to an increased impact of nonlocality. We have finally
chosen a pitch length of dG = 500 nm according to a maximum
of the predicted blue shift of about 5.5 nm for m = 5. Keeping
the pitch below the shortest working wavelength guarantees that
only the zeroth order propagates, even if the evanescent orders
of diffraction are coupled to the SP. In other words, all of the

(a) (b)

Fig. 4. (a) Dispersion relation of a SP propagating at an air-TiO2-
Ag multilayer. Local results are in blue, and nonlocal ones are in
orange. For comparison, the two dashed lines are the nonlocal disper-
sion relations, respectively, for an Air-Ag interface (left) and a TiO2-Ag
interface (right). The black vertical lines indicate the coupling condi-
tion given by Eq. (13) for a grating pitch of 500 nm considering the five
first diffraction orders (1 to 5 from left to right). (b) Estimation of the
blue shift 1λc ,m as a function of the grating pitch dG. m varies 1 to 5
(bottom to top).

non-reflected light must be absorbed by the guided modes along
the structure.

4. GrooveWidth andGrating Thickness

The determination of the two remaining geometrical param-
eters, i.e., the groove aG and the grating thickness hG, is less
straightforward. We have to establish a trade-off, such that the
excitation of the SP for different orders of diffraction can be
done efficiently without perturbing the guided mode too much.
In order to avoid gap plasmons to build up in the slits [69], a
large enough aG value is needed. We choose aG =

1
3 dG here.

Starting from hG = 2 nm, we have increased the grating depth
until an efficient coupling to the SP mode was found—we relied
on a pure RCWA method [65,66] to adjust this parameter.

It is easy to associate a diffraction order m for most of the
resonances supported by the grating described above (see Fig. 5).
However, starting from almost zero and progressively increasing
the height hG, the resonance that we first attributed to be of
order m = 1 exhibits a splitting (see Fig. 5).

The field maps in Fig. 5 clearly show that one of the reso-
nances corresponds to a cavity-like resonance, which is entirely
located in the grooves of the grating, i.e., it is reflected back and
forth horizontally. The other resonances are cavity resonances
of SPs that propagate on top of the grating and are reflected by
the edges of the metal. We label those resonances with 1b (where
“b” stands for “bottom”) and 1t (where “t” stands for “top”),
respectively. Since the thickness of the dielectric is different for
both kinds of plasmons, their wavevector cannot be the same,
therefore the splitting. We finally chose to take hG = 68 nm.

B. Influence of Nonlocality on Grating Reflectivity

Now that the grating has been designed and its physics is well
understood, we use software taking spatial dispersion into
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(a) (b) (c)

Fig. 5. (a) Reflectivity of the grating illuminated in normal inci-
dence for different values of hG computed using a local RCWA for
λ ∈ [480, 850] nm. (b) Reflectivity of the grating for different values
of hG for λ ∈ [850, 1700] nm. Each vertical coordinate system has
been chosen to maximize visibility. The horizontal one is kept constant
from top to bottom. (c) Magnetic field amplitudes illustrating the
splitting of diffraction order 1 into two sub-orders. The corresponding
(hG, λ) couples (in nm) are from top to bottom: (2,940), (30,1086),
and (68,980) on the left and (68,1540) on the right.

account in order to assess its influence on the reflectivity of the
grating. This is necessary, since analytical solutions do not exist
anymore, and we have to rely on a numerical algorithm. Here,
we use a DGTD method for the simulations of the grating.
The result is shown in Fig. 6 for wavelengths ranging from
λ= 500 nm to λ= 2000 nm. The small discrepancy between
local DGTD and RCWA is due to a known problem of the
latter in very peculiar conditions [70] and occurs only far off
the resonances. We can clearly identify five dips due to SP exci-
tation corresponding to four diffraction orders, the first order
being split as discussed above. The results show a consider-
able influence of the spatial dispersion, which is significantly
stronger than what has been predicted theoretically. This can be
attributed to the grating itself and to the shift of the resonances
towards large wavelengths (and larger wavevectors for the SP).
The resonances linked to the diffraction orders m = 4 and
m = 2 (see inset in Fig. 6) experience blue shifts of, respectively,
1.8 nm and 6.5 nm compared to the local prediction. Especially
for m = 2, this is clearly higher than the expected shift of 3 nm
[see Fig. 4(b)]. For m = 4, the shift is slightly smaller than
expected. Because this mode is excited for a lower wavelength,
it presents an effective index with a higher imaginary part. The
field maps show that the mode is more localized in the dielectric
than in the metal, resembling a mode that would be guided
in the dielectric layer. This hybridization makes the mode less
sensitive to nonlocality than the second-order mode, which
propagates much closer to the metal.

Finally, we can identify two wavelength bands of interest. The
first one for λ= [550, 800] nm (see inset) shows the highest
difference between local and nonlocal simulations. It comprises
two blue shifted diffraction orders, and the whole response
between the two is also clearly affected by nonlocality—making
this regime a good choice to estimate the parameter β. The
second region of interest is the rightmost part in Fig. 6 for

λ= [800, 2000] nm. It comprises the two suborders 1t and 1b,
which are less sensitive to nonlocality. For this reason, we believe
that this region is not useful to probe nonlocality, but well suited
for a geometrical parameter characterization. We have to keep
in mind that any estimation of β relies merely on a comparison
between material models. Such comparisons are very sensitive
to the geometrical parameters. Since we are trying to measure
discrepancies on the order of 1% of the wavelength, we must
ensure that nonlocality will not be concealed by uncertainties on
local parameters.

5. TELEMETRY AND PARAMETER ESTIMATION

In the previous section, we have theoretically predicted that the
metallic grating that we have designed is sensitive to nonlocality.
The goal of the present section is to present the challenges that
would have to be faced by experimentalists and to propose a
methodology relying on the solution of inverse problems and
uncertainty quantification (UQ), which could be used to assess
realistically the presence of nonlocality and to estimate the
crucialβ parameter.

In order to take into account the fact that, whatever the
geometry and the imperfections of the grating, the spectra will
be noisy, we have generated an artificial but realistic reflectance
spectrum. We use nonlocal simulations and then add a noise
whose characteristics are similar to actual experimental spectra
provided by experimentalists [71]. The noise has been chosen
with a correlation length of 0.001 nm and a maximum differ-
ence of 0.04 with the original, unperturbed spectrum. We have
then tested whether the parameters of the grating and of the
model could be retrieved despite this realistic level of noise.

A. Post-Fabrication Telemetry

1. GratingParameters

The grating parameters would have to be determined before
any dielectrics is deposited. A natural way of determining these
geometrical parameters would be to rely on a scanning electron
microscope (SEM) or an atomic force microscope (AFM),
which would both allow one to directly measure the precise
parameters for each of the grooves of the grating. However, for
a structure without any dielectrics, the impact of nonlocality
is negligible—which means that the geometrical parameters
can be determined using telemetry, without any assumption
on the nonlocal parameter, i.e., with a local model. The optical
response of a grating actually depends more on average geomet-
rical parameters [72], as the grooves may be all slightly different.
Telemetry has the advantage of allowing the determination of
these average parameters (especially the period of the grating),
which will constitute our geometric model.

We generate an artificial measurement spectrum that we
denote as Rmeas(λ). Furthermore, it is possible for given dG, aG,
and hG to compute a theoretical spectrum R(λ). We define the
distance between the two spectra as

‖Rmeas(λ)− R(λ)‖2
L2(λ1,λ2)

=

∫ λ2

λ1

(Rmeas(λ)− R(λ))2dλ.

(14)
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Fig. 6. Reflectivity R of the whole structure as a function of the wavelength λ. The orange line corresponds to the nonlocal DGTD result, the blue
line to the local DGTD result, and the black, dotted line to the local RCWA result. The annotations 1t, 1b, 2, 4, and 5 refer to the excitation of the SP
with respect to the diffraction order m of Eq. (13). The inset plot zooms in to the wavelength range of 550–800 nm, where the impact of nonlocality is
the most prominent.

The integration interval [λ1, λ2] will be chosen differently
in the following, depending on which parameters have to be
retrieved. We performed multiple optimization runs with
different algorithms (particle swarm, pattern search, and a
derivative-based optimizer combined with a kriging-based
meta-model) in order to find the parameters (dG , aG , and hG ),
which would produce the minimum distance between the theo-
retical spectrum and the artificially generated one. We underline
that we constrained the optimization to look for geometrical
parameters in intervals that would be in accordance with the
precision of the etching process. The fabrication tolerances of
state-of-the-art nano-processing still lead to a priori tolerances
of about±5 nm for the etching process [73] and about±11%
[74] for the dielectric deposition.

Considering spectra between 400 nm and 1200 nm to
retrieve the parameters, we have found that the derivative-based
optimization method performed best, followed by pattern
search and particle swarm, the latter seemingly being less appro-
priate for this type of optimization problem. The geometrical
parameters could be retrieved with an excellent accuracy despite
the noise (see Fig. 7).

2. Dielectric Thickness

The dielectric thickness has to be determined by telemetry.
While the previous step can be performed with purely local
simulations, here nonlocality clearly plays a role. This time,
our artificially measured data are generated using the non-
local spectrum corresponding to the right part of Fig. 6, i.e.,
[λ1, λ2] = [800, 2000] nm. Since the resonances 1t and 1b
are almost insensitive to nonlocality, trying to retrieve hD by
minimizing the distance between the measured nonlocal spec-
trum and a local in this wavelength range makes sense and
actually yields results that are very close to the real value (the
retrieved value was hD = 84.8 nm, with the real value being
hD,init = 85 nm).

Fig. 7. Reflectivity spectrum. An artificial white noise has been
added to the original spectrum (in blue) obtained for a grating
illuminated in normal incidence without any dielectric layer and
with hG = 68.0 nm, dG = 500.00 nm, and aG = 166.7 nm. In
orange: the result of the optimization. This spectrum corresponds to
hG = 68.1 nm, dG = 499.2 nm, and aG = 165.4 nm. The constraint
intervals are chosen to be hG ∈ [62, 73] nm, dG ∈ [495, 505] nm,
and aG ∈ [161, 171] nm.

B. Geometric Uncertainty versus Nonlocality

The geometric telemetry has led to the fabricated geometries in
Table 1, where, for each parameter z with initial values zinit used
to create Rmeas, z= zopt is the mean value and δz = |z− zinit| the
maximum deviation.

Given the uncertainties due to the retrieval process (with
other means of measuring the geometric parameters, these
uncertainties would likely be of the same magnitude), we need
to be sure that we will be able to distinguish the impact of non-
locality from an unavoidable small error in the determination
of the geometric parameters. We use UQ to provide us with
answers, and in order to estimate the impact of nonlocality, we
use, again, aβ value from the literature [39].

We recast the geometrical parameters hG, dG, aG, and hD

as random variables (RVs) following uniform distributions
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Table 1. Uncertain Parameters Extracted from
Telemetry

Parameter z δz Units

hG 68.1 0.1 (nm)
dG 499.2 1.0 (nm)
aG 165.4 1.5 (nm)
hD 84.8 0.3 (nm)

U[z− δz, z+ δz] [see Table 1]. We then perform an UQ [75]
study, in order to estimate the expectation value and variance
of the reflectivity in two resonance regions corresponding to
the diffraction orders 2 and 4. In particular, we consider 25
wavelengths in the range of [550,600] nm (m = 4) and 50
wavelengths in the range of [700,800] nm (m = 2).

Since the underlying computational model is a complex
one, we rely on black-box UQ methods, i.e., the model and
its numerical solvers are used without any modifications. In
the context of the present work, we employ a spectral method
[76,77], in particular the stochastic collocation method [78–
80], taking advantage of a number of factors. First of all, we deal
with a small number of RVs; therefore, the costs of the method
remain affordable. Moreover, numerical tests indicate that the
dependence of the reflectivity upon the RVs is smooth, which
is a prerequisite for fast convergence. Finally, we assume that
the RVs are mutually independent, which greatly simplifies the
method’s implementation.

The first step is to choose M different sets of values for the
geometrical parameters z= (hG, dG, aG, hD), called the col-
location points. For each wavelength mentioned above, the
reflectance R(λ) can be considered as a function f (z), which is
approximated by

f (z)≈
M∑

m=1

f (z(m))9m(z), (15)

where z(m) are realizations of the random vector (the collocation
points) and 9m are multivariate Lagrange polynomials. The
collocation points are based on univariate Clenshaw-Curtis
quadrature nodes and are produced by Smolyak sparse grid
rules [81,82]. The multivariate polynomials are formatted as
products of univariate Lagrange polynomials, defined by the
corresponding univariate Clenshaw-Curtis nodes.

The reflectivity’s expectation value E[R] and variance V[R]
can now be estimated by post-processing the approximation
terms of Eq. (15). Starting with the definitions

E[R] =
∫
0

f (z)ρ(z)dz, (16)

V[R] =E[(R −E[R])2] =E[R2
] − (E[R])2, (17)

where ρ(z) is the joint probability density function, we approxi-
mate the corresponding integrals with the multi-dimensional
Gauss quadrature formulas

E[R] ≈
M∑

m=1

wm f (z(m)), (18)

Fig. 8. Comparison of the local and nonlocal reflectivity for diffrac-
tion order m = 4. The positions of the local resonances are 579 nm,
and 577 nm for the nonlocal one. This leads to a blue shift of almost
2 nm. In blue: theE[R] ± 2σ area, being an output of the UQ analysis
based on a stochastic collocation method. In orange: the min-max
intervals of the reflectivity for all interval bound combinations of the
geometrical parameters given in Table 1.

Fig. 9. Same as Fig. 8 for order of diffraction m = 2. The positions
of the local resonances are 735 nm, and the nonlocal ones are 728 nm.
This leads to a blue shift of almost 7 nm.

V[R] ≈
M∑

m=1

wm( f (z(m))−E[R])2, (19)

wherewm denote the corresponding quadrature weights. We use
the UQ study results in order to estimate±2σ intervals around
the optimized local reflectivity curve, where σ =

√
V[R] refers

to the standard deviation. The results corresponding to each
resonance area are presented in Figs. 8 and 9 (in blue), respec-
tively. Since the nonlocal DGTD simulations are too expensive
for an UQ of the same kind as we have performed for the local
model, i.e., the evaluation of Eqs. (18) and (19), we rely on a
min-max study. Here, min-max represents solver calls for all
interval bound combinations (in orange), as depicted in the
corresponding figures.

According to Fig. 8, a clear measurement of the resonance
m = 4 is almost impossible due to the small difference between
the local and nonlocal curves. Nevertheless, the second reso-
nance, i.e., m = 2 (see Fig. 9), is significantly more sensitive
to nonlocality and stays distinguishable. For the sake of
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robustness, we have also performed simulations (data not
shown) with the lowest theoretically acceptable value for
β = 0.85× 106 m · s−1 [83], which still guarantees a blue
shift of 5 nm for the second resonance, i.e., stronger than the
geometric uncertainty.

Other geometrical parameters could be taken into account
using this approach, such as rounded corners or slanted walls.
We underline that the most critical parameter would remain, in
any case, the average periodicity of the grating. This parameter
determines mainly the different wavevectors that are excited.
We thus expect the discrepancy between the local and nonlocal
simulation, which allows one to determine β to persist despite
the eventual imperfections of the grating.

C. Model Calibration

Knowing the geometry and estimating the impact of nonlocality
to be greater than geometric uncertainties, we now want to
extract the nonlocal material parameter β. We underline that
different theoretical expressions can be found in the literature
for this constant [43,49,83], so that the theoretically acceptable
values for β may lie between βmin ≈ 0.85× 106 m · s−1 [83]
and βmax ≈ 1.4× 106 m · s−1 [43]. However, the experimental
results available so far [39,40] point consistently towards a value
close to the upper estimation of β = 1.35× 106 m · s−1. This
underlines how important the determination of β can be and
explains why we have considered this value so far.

In order to estimate how precise our estimation of β can
be with the grating setup, we proceed in the same fashion as
for the geometric telemetry but we use a wavelength range
of [550,800] nm. Using DIOGENeS and DGTD [38], we
find the β value that minimizes the distance between R and
Rmeas. The geometric size of the structure, in combination with
the very small effective wavelengths and the short interaction
range of nonlocal effects, which is in the range of several nm at
the metallo-dielectric interface, results in a computationally
expensive procedure. The solution of the inverse problem can
be significantly accelerated by meta-model-based optimization
algorithms. We have used the kriging (Gaussian process) meta-
model in combination with a derivative-based optimization
implementation of the FAMOSA [84] optimization toolbox.
We find βinverse = 1.385× 106 m · s−1, which is reasonably
close to the βinit = 1.35× 106 m · s−1 (the value used to gener-
ate Rmeas), indicating that the value ofβ can be retrieved with an
error smaller than 10%.

6. CONCLUSION

We have first shown that, in the framework of the hydrodynamic
model, SPs can be sensitive enough to spatial dispersion—
provided that the dielectric considered has a sufficiently high
permittivity, such as TiO2. Such a conclusion is in contrast to
previous works that suggested that the impact of spatial disper-
sion could be too difficult to measure optically—which is true
only for an interface between metal and air.

Since there is a link between such guided modes and the local-
ized resonances of metallic nanoparticles, this leads us to expect
an impact of nonlocality on essentially any metallic nanoparticle

with a radius much larger than 20 nm, for which the geom-
etry is more likely to be well controlled, buried in a high-index
medium. Using Mie theory, we estimate the blue shift brought
by nonlocality to be at least of 5 nm in wavelength in TiO2, an
effect that could potentially be observed experimentally.

Since high-wavevector guided modes cannot be excited using
prism couplers, we have then studied how the SPs can be excited
using a grating coupler. We have shown, using state-of-the-art
numerical tools, that such a structure would allow the observa-
tion of spatial dispersion by means of blue-shifted resonances up
to almost 7 nm (around 1% of the wavelength). Using UQ and
inverse problem solving, we have identified which resonance
precisely could be used to estimate the main parameter of the
hydrodynamic model and shown how such an estimation could
be made. We underline that such a procedure could well be
applied to nanoparticles as well.

As already evoked in several earlier works [59,85,86] and
clearly demonstrated in the present work, any plasmonic struc-
ture surrounded by a high-refractive-index medium such as
TiO2 will be accurately described only if spatial dispersion is
taken into account.

We believe that, by proposing a structure with realistic param-
eters and a procedure to carefully estimate the impact of spatial
dispersion, this work will pave the way for future experiments
that shall give reliable answers to the community on the limits of
Drude’s model for plasmonics and its potential replacements.

Funding. Deutsche Forschungsgemeinschaft (GSC 233);
Agence Nationale de la Recherche (ANR-13-JS10-0003).
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