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The group velocity of a plasmonic guided mode can be written as the ratio of the flux of the Poynting to the
integral of the energy density along the profile of the mode. This theorem, which links the way in which energy
propagates in metals to the properties of guided modes and Bloch modes in a multilayer, provides a unique
physical insight into plasmonics. It allows better understanding of the link between the negative permittivity
of metals and the wide diversity of exotic phenomenon that occur in plasmonics—like the slowing down of guided
modes, the high wavevector, and the negative refraction. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAB.36.001150

Deeply subwavelength metallic structures give us unprec-
edented control of visible light, allowing us to focus, concen-
trate, absorb, or scatter light very efficiently, or to even enhance
the emission of light by fluorophores [1] at totally new levels.
Metals actually present a very peculiar optical response that di-
electrics are totally incapable of—which can be linked to the
presence of a free electron gas, a plasma, inside even the tiniest
metallic nanoparticles [2].

Plasmonic resonators are the smallest optical resonators pos-
sible and their resonances can always be linked to the excitation
of some kind of plasmonic guided mode. There is thus a large
diversity of these modes, from the well-known surface plasmon
[3] to long- and short-range surface plasmons [4], gap plasmons
[5], or modes supported by hyperbolic metallo-dielectric multi-
layers [6]. Most of them present very high wavevectors, which
explains the reduced size of the plasmonic resonators [7,8]:
they are essentially cavities for guided modes with very small
effective wavelength. One must finally underline that exotic
phenomena like negative refraction may also occur in metallo-
dielectric multilayers [9–12].

All these features lack a unified view that would help to give
a physical insight into the reasons why large wavevector guided
modes and negative refraction are common in plasmonics and
very exotic in dielectric structures—requiring the careful tailor-
ing of photonic crystals, for instance [13,14]. We think that
considering the way that energy flows when such modes propa-
gate provides this kind of insight.

The average flux of the Poynting vector has actually been
used in the context of metamaterial and negative index materi-
als as a useful tool to predict in which direction a mode
really propagates (i.e., the sign of its group velocity). Such

an approach relies on a theorem showing that the energy veloc-
ity is equal to the group velocity for modes propagating in non-
dispersive, dielectric media [15,16]. This theorem has been
mostly ignored because, except in a few cases like when a mode
approaches a cutoff condition, the group velocity does not
present any exotic behavior.

Assuming this link holds even in the case of plasmonic or
metamaterial waveguides, it can prove very useful to determine
the sign of the group velocity by simply using the profile of the
guided modes at a given frequency without having to actually
compute the dispersion relation [17–19]. However, the optical
response of metals is linked to the presence of free electrons,
which transport a part of the guided mode energy and whose
kinetic energy cannot be neglected. For a plane wave propagat-
ing in a plasma, provided the energy of the electrons is taken
into account both in the energy flux and in the energy density,
it has been shown by Bers [20] that the energy and flux velocity
are the same. This underlines that Yariv and Yeh’s theorem [15]
cannot be applied to plasmonic waveguides. Since metals are
highly dispersive and can be considered boxes containing real
plasma, it is even surprising that computing the average flux of
the Poynting vector could be successful in predicting the sign
of the group velocity.

Here we show that it is actually possible to generalize Yariv
and Yeh’s theorem in the context of dispersive media, including
metals. This means that there is no need to modify the expres-
sion of the energy flux but only to adapt the energy density
expression, to make the theorem valid—despite what has been
established for plasma [20]. Said otherwise, the group velocity
of a guided mode in a plasmonic multilayer is equal to the en-
ergy velocity of the electromagnetic field alone, and the energy
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transported by the free electrons, while not negligible, can be
completely ignored. We then show using several examples that
considering the energy velocity can provide a unifying vision of
the optical response of plasmonic multilayers.

We consider a multilayered structure invariant in the x and
y directions, and a guided mode solution of Maxwell’s equa-
tions presenting a ei�kxx−ωt� dependency in x and t . We will
assume the mode is s-polarized, because nothing exotic occurs
for the s polarization in metallo-dielectric structures. Maxwell’s
equations reduce to

∂zEx − ikxEz � iωμ0Hy, (1)

∂zHy � iωϵ0ϵEx , (2)

ikxHy � −iωϵ0ϵEz : (3)

Any change in the mode will be linked to a small change in
its propagation constant, noted δkx , its pulsation δω, and its
electric and magnetic fields, respectively, δE and δH. These
small changes are all linked by Maxwell’s equations, whatever
dispersion relation of the guided mode is considered. These
equations can thus be differentiated to yield

−iδkxEz − ikxδEz � ∂zδEx � iδωμ0Hy � iωμ0δHy, (4)

∂zδHy � iδωϵ0ϵEx � iωϵ0δϵEx � iωϵ0ϵδEx , (5)

iδkxHy � ikxδHy � −iδωϵ0ϵEz − iωϵ0δϵEz − iωϵ0ϵδEz ,

(6)

and since ϵ is only a function of ω, we can write that
δϵ � δω ∂ϵ

∂ω.
Following Yariv and Yeh [15,16], we introduce now the

quantity

F � δE ⊗ H� � δH� ⊗ E�H ⊗ δE� � E� ⊗ δH, (7)

where * denotes the complex conjugate.
Since we restrain ourselves here to a multilayered structure,

we need to calculate only ∂zF z � 2i∂zI�δExH�
y − ExδH�

y �.
Given its expression, we calculate the quantity

A � ∂z�δExH�
y − ExδH�

y �
� ∂zδEz ·H�

y � δEx · ∂zH�
y − ∂zδH�

y · Ex � δH�
y · ∂zEx :

Using Eqs. (4)–(6), we find that the different terms can be
written

∂z�δEx�H�
y � iδkxEzH�

y � ikxH�
y δEz � iδωμ0jHyj2

� iωμ0δHyH�
y , (8)

∂zH�
y · δEx � −iωϵϵE�

x δEx , (9)

−∂z�δH�
y �Ex � iδωϵ0

�
ϵ� ω

∂ϵ
∂ω

�
jEx j2 � iωϵ0ϵδE�

x Ex ,

(10)

−δH�
y ∂zEx � −ikxEzδH�

y � iωμ0HyδH�
y : (11)

Using Eqs. (3) and (6), we have in addition

ikx�δEzH�
y −EzδH�

y � � δEziωϵ0ϵE�
z � iωϵ0ϵδE�

z Ez

� δkxEzH�
y � iωϵ0

�
ϵ�ω

∂ϵ
∂ω

�
jEz j2:

(12)

By adding all the terms to calculate A and using Eq. (12), we
finally get

∂zF z � 4iδkxR�EzH�
y �

� 2iδω
�
μ0jHj2 � ϵ0

�
ϵ� ω

∂ϵ
∂ω

�
jEj2

�
, (13)

where all the real terms have been eliminated.
Now if we consider a mode guided along the x axis in a

multilayered structure containing metallic layers, then the
radiation condition imposes vanishing field amplitudes at
infinity and thus a vanishing Fz , which allows us to write that
over a section of the waveguide we haveZ �∞

−∞
∂zF zdz � 0: (14)

This allows us to conclude that the group velocity vg is given by

vg �
δω

δkx
� −

R
1
2R�EzH�

y �dzR
1
4 μ0jHj2 � 1

4 ϵ0fϵ� ω ∂ϵ
∂ωgjEj2dz

, (15)

that is, the ratio of the total x-directed time averaged Poynting
vector, in the numerator, to the total time averaged energy, in
the denominator.

We underline that such a proof naturally yields the classical
expression of the energy density in a dispersive media whose
permittivity depends on the frequency—so that this constitutes
a fourth way, after the approaches of Brillouin, Landau, and
Loudon [21] to reach this expression. This way may even be
the most natural.

To illustrate when the theorem provides a better under-
standing of plasmonics in general, we first consider the
emblematic surface plasmon propagating at the interface be-
tween a metal with a permittivity ϵm and a dielectric with a
permittivity ϵd. The surface plasmon dispersion relation reads

κm
ϵm

� κd
ϵd

� 0, (16)

where κi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2x − k20ϵi�

p
are wavevectors in the ẑ direction

defined such that the waves are “propagating” away from the
interface as e�κz z . To compute vg , one needs only the mode
wavevector kx by solving the dispersion relation and, from it,
the knowledge of field amplitudes implied in Eq. (15) allows
interpretation of vg in terms of energy. In this way, we have
numerically checked the validity of Eq. (15) ensuring vg � vE .
The mode profile, the Poynting vector, and the dispersion
curve are shown on Fig. 1. Since the Poynting vector is propor-
tional to 1

ϵ jHyj2 and since ϵm < 0, the energy flux is negative
in the metal and positive in the dielectric. Far below the plasma
frequency, this phenomenon has no real impact on the propa-
gation: the permittivity is very large, and the negative flux is
thus very small. When the frequency gets closer to the plasma
frequency, the permittivity in the metal decreases, the negative
flux of the energy increases, and the energy velocity of the
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whole mode is thus decreasing. When the frequency is ap-
proaching ωsp � ωpffiffiffiffiffiffiffiffi

1�ϵd
p , the permittivity in the metal is nega-

tive but close to the permittivity of the dielectric in absolute
value. Since the magnetic field is continuous at the interface,
this means that the negative flux almost balances the positive
one. The energy velocity thus goes to zero, and thanks to the
theorem above, we know the group velocity does, too. Since
the group velocity is the inverse of ∂kx

∂ω, this means that this
quantity is increasing and finally kx is thus increasing when
the frequency approaches ωsp. There is thus a direct link be-
tween the fact that the Poynting flux vanishes and the high
wavevector presented by the surface plasmon. This effect is ex-
treme in the sense that the phase velocity vanishes, too, and the
mode approaches the cutoff condition. More generally, as light
propagates close to a metal, the energy propagates backward in
the metal, which slows down the propagation of light itself.
Light thus experiences what we call a plasmonic drag.

This phenomenon is even more obvious in the case of the
gap plasmon [5], because a geometrical parameter (instead of
the frequency) allows control of the Poynting balance. A gap
plasmon is a mode in a dielectric sandwiched between two
metals. The dispersion relation of this guided mode reads

κm
ϵm

� κd
ϵd

tanh

�
κd h
2

�
� 0: (17)

The thickness of the dielectric h is small enough so that the
picture of coupled surface plasmons no longer holds [22].
The fundamental mode presents a diverging wavevector when
the gap goes to zero. Figure 2 shows the profile of a gap
plasmon, its Poynting vector, and dispersion curves for different

gap widths. The whole behavior of the mode is easier to under-
stand from the energy point of view: when the gap closes or
when the frequency is getting close to ωsp, the energy flux
in the metal begins to balance the flux in the dielectric. The
mode is thus slowed down. The dispersion curve of the gap-
plasmon resemble to the one of a surface plasmon, but when
the gap closes the energy (and thus the group) velocity goes to
zero, pushing the wavevector to correspondingly larger values.

The same reasoning can be applied to more complex struc-
tures, like the multilayers with alternating dielectric layers of
thickness hd and metallic ones with a thickness hm. The plas-
monic drag is largely present, too. The modes in that case
present very high wavevector when the ratio hm

hd
is large enough,

and they have the advantage of propagating in a thicker struc-
ture compared to the gap plasmon. They are thus easier to ex-
cite using end-fire coupling methods, and the resonators that
can be obtained using such structures (hyperbolic wire anten-
nas) are deeply subwavelength while preserving their cross
section [8]. The dispersion relation and amplitudes of guided
modes in such structures, or in any arbitrary multilayer, can be
found by solving an eigenvalue problem based on the transfer
[23] or scattering [24] matrix methods, then allowing an energy
point of view interpretation thanks to Eq. (15). A homogeni-
zation procedure even leads to simplified expressions for the
wavevector and the field amplitudes [8] for such modes.

Finally, we would like to underline that, as in the original
work of Yariv and Yeh, the theorem can be applied not only to
guided modes, but to Bloch modes, too. For Bloch modes in
periodic structures [16], the same conclusion can be reached,

Fig. 1. (a)–(c) Magnetic field and Poynting vector profiles in the case
of the surface plasmon for different values of ω

ωp
. (d) Dispersion curves

for the surface plasmon, showing the frequencies ω1, ω2, and ω3.

Fig. 2. (a)–(c) Magnetic field and Poynting vector profiles of the
gap plasmon for different values of the dielectric gap width h and
ω
ωp

� 0.25. (d) Dispersion curves in the case of the gap plasmon,
for, from left to right, h1, h2, and h3.
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except that the integration has to be done only on one period of
the multilayer, whatever its complexity [11]. We consider now
a multilayer with a period composed of a metallic layer with a
thickness hm and a dielectric layer with a thickness hd . Using
the periodicity D � hm � hd, the theorem can be written

vg �
− 1
D

R
D
0

1
2R�EzH�

y �dz
1
D

R
D
0

1
4
μ0jHj2 � 1

4
ϵ0fϵ� ω ∂ϵ

∂ωgjEj2dz
: (18)

In that case, the results would be very similar to what has been
published recently in the case of periodic lossy structures [25].
This allows to better understand when such a mode will present
a negative group velocity, for instance. Such a phenomenon
emerges when the energy and the group velocity are opposite
to the wavevector along the interfaces. In the limit where the
layers are all very thin compared to the wavelength, the homog-
enization regime, the magnetic field does not really change
from one layer to the other, given how thin they are. In that
case, the numerator of Eq. (18) can be recast as

−
1

D

Z
D

0

1

2
R�EzH�

y �dz �
1

D
kx

2ωϵ0

�
hm
ϵm

� hd
ϵd

�
jHyj2, (19)

� kx
2ωϵ0ϵeff

jHyj2, (20)

with ϵeff � D
hm
ϵm
�hd

ϵd

, which is precisely the zz component of

an effective permittivity tensor corresponding to an equivalent
homogeneous anisotropic medium for the periodic multi-
layer [1].

When the overall Poynting flux is negative, then the signs of
the group velocity and the wavevector along the x axis are op-
posite, leading to negative refraction. That is, energy along the
interfaces propagates in the opposite direction of the impinging
wavevector x component—the dispersion curve is in that case
hyperbolic [12]. The condition ϵeff < 0 can be written

hm
ϵm

� hd
ϵd

< 0, (21)

and under this form, it can be interpreted as a simple Poynting
balance over one period: the Poynting flux in the metal is pro-
portional to hm

ϵm
, while the Poynting flux in the dielectric layer

is proportional to hd
ϵd

because Hy is essentially constant. The
condition for which negative refraction occurs can thus be seen
as equivalent to requiring the global Poynting flux to be oppo-
site to the wavevector. This example shows how general the
vision of plasmonics through the prism of energy can be. We
emphasize that this also allows us to easily understand why
dielectric multilayers are completely unable to produce negative
refraction: there is no way the average Poynting flux can be
negative when all the permittivities are positive [19], which
underlines how peculiar the response of plasmonic multilayers
is in comparison.

In conclusion, we have extended Yariv and Yeh’s theorem to
dispersive media, allowing the expression for the energy density
in dispersive media to appear naturally, and shown its impor-
tance in the framework of plasmonics by illustrating it on vari-
ous examples. The theorem shows that, even in plasmonics

where electrons store a lot of the energy, the energy velocity
of the electromagnetic wave alone is equal to the group velocity.
This probably means that there should be a way to define an
energy flux and an energy velocity that take into account the
free electrons, and probably to get an equivalent result [20], but
this is beyond the scope of the present paper, and it would not
be as a powerful tool to understand plasmonics. Considering
the way the energy flows, through the calculation of the average
Poynting flux essentially, actually provides a physical picture
that spans the whole zoology of plasmonic guided modes. The
Poynting vector along the propagation direction is indeed neg-
ative in metals, leading to a slowing down of any light propa-
gating in their vicinity. When this plasmonic drag is extreme,
it leads to very small group velocity and large wavevectors, a
crucial parameter to explain the extraordinary way metals can
concentrate light in deeply subwavelength volumes. When the
energy flux in metals overwhelms the one in the dielectric, as
has been shown in metallo-dielectric structures, negative refrac-
tion occurs. While we do not expect this vision to allow any
new discovery in such a thoroughly studied field, we think
it really explains why the properties of metals in the plasmonic
regime, characterized by relatively low absolute values of the
negative permittivity of metals, are so peculiar.

Funding. Agence Nationale de la Recherche (ANR)
(ANR-13- JS10-0003).
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