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The interaction of light with metallic nanostructures is increasingly attracting interest 
because of numerous potential applications. Sub-wavelength metallic structures, when 
illuminated with a frequency close to the plasma frequency of the metal, present 
resonances that cause extreme local field enhancements. Exploiting the latter in applications 
of interest requires a detailed knowledge about the occurring fields which can actually 
not be obtained analytically. For the latter mentioned reason, numerical tools are thus 
an absolute necessity. The insight they provide is very often the only way to get a deep 
enough understanding of the very rich physics at play. For the numerical modeling of 
light-structure interaction on the nanoscale, the choice of an appropriate material model is 
a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with 
no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. 
From the mathematical point of view, when a time-domain modeling is considered, these 
models lead to an additional system of ordinary differential equations coupled to Maxwell’s 
equations. However, recent experiments have shown that the repulsive interaction between 
electrons inside the metal makes the response of metals intrinsically non-local and that 
this effect cannot generally be overlooked. Technological achievements have enabled the 
consideration of metallic structures in a regime where such non-localities have a significant 
influence on the structures’ optical response. This leads to an additional, in general 
non-linear, system of partial differential equations which is, when coupled to Maxwell’s 
equations, significantly more difficult to treat. Nevertheless, dealing with a linearized 
non-local dispersion model already opens the route to numerous practical applications 
of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) 
method able to solve the system of Maxwell’s equations coupled to a linearized non-local 
dispersion model relevant to plasmonics. While the method is presented in the general 3D 
case, numerical results are given for 2D simulation settings.
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1. Motivations and objectives

1.1. Physical background

Nanometer scale (or even sub-nanometer scale) metallic or metallo-dielectric devices illuminated at optical frequencies 
demonstrate interesting features that are increasingly exploited in the area of nanophotonics and plasmonics [1–4]. To be 
able to understand and make use of these enhanced properties, an appropriate modeling is required, in particular to describe 
the reaction of the electrons in the metal subjected to an incident electromagnetic wave.

Classically, the response of the electron gas is given by Drude’s model. Drude’s model neglects mutual electron inter-
actions and the polarization current is proportional (in the frequency domain) to the electric field at any spatial position. 
Hence, the metal behaves like a regular local dielectric medium. The space–time evolution of this polarization is then gov-
erned by a set of differential equations which is itself linearly coupled to the classical set of Maxwell’s equations.

At the scales and frequencies considered in the recent plasmonic research, the classical description of the electron re-
sponse, i.e. Drude-like models, is not sufficient. A first step towards an improved model is the inclusion of the mutual 
repulsion between electrons which can be done by using a hydrodynamic model [5]. Such a model links the effective po-
larization to the electric field. In this case, the equations governing the evolution of the polarization current are partial 
differential equations. This leads to the fact that the behavior of the electron gas does not only depend on the field at the 
considered position (otherwise the response would be deemed local) but also on the neighboring field distribution (making 
the response non-local). Such a phenomenon is called spatial dispersion. This type of spatially dispersive model is at the 
heart of the study proposed here. Recent experiments [6,7] as well as theoretical works [8,9] have actually brought forward 
the idea that the non-local response of the metal and its impact on the global optical response of the structure could be 
accurately described by such a model.

One of the main setups explaining how a structure can be sensitive to spatial dispersion is light propagation in gaps 
smaller than 50 nm commonly referred as gap-plasmon. A gap-plasmon is a mode that is able to reach very short effective 
wavelength [10] if the gap width sufficiently decreases. As the effective wavelength gets closer to the free mean path of 
electrons in the metal, the influence of spatial dispersion is more and more important [8,11,12]. This can be expected to 
occur for gaps that are typically smaller than 5 nm. When the size of the gap is smaller than 1 nm, then the slight spill-out 
of the electron gas outside of the metal has to be taken into account [13]. Above that threshold, however, the optical 
response is not affected by the spill-out effect, since its typical spatial scale is around 0.2 nm [14]. Below those scales, other 
models should be considered [5,15]. For gaps lager than 1 nm, hard-wall boundaries, as they have been used in the present 
work, are expected to lead to sufficiently accurate results regarding the overall physical precision and appropriateness of the 
model.

1.2. Numerical modeling issues

In the field of computational nanophotonics, there is currently a need for efficient and accurate numerical methodologies 
since the geometries, scales and propagation media can be rather complex. In the literature, a large number of studies 
are devoted to FDTD (Finite Difference Time-Domain) type discretization methods based on Yee’s scheme. Despite their 
numerous advantages (efficiency and easy implementation), these FDTD methods poorly perform when facing the modeling 
difficulties that are inherent to nanophotonic applications, in particular in the presence of curved geometries. Indeed, the 
stair-casing effect resulting from the use of a cartesian grid notably degrades the accuracy of these FDTD methods1 [16]. 
Numerical methods based on unstructured and possibly non-conforming meshes2 are particularly appealing in this context. 
This is especially the case for approaches based on a Discontinuous Galerkin (DG) formulation. So-called DGTD methods 
mix the best of finite element and finite volume type discretization methods. They are based on a local formulation on 
each mesh element, while the continuity constraint at the element boundaries is relaxed. Hence, an appropriate treatment 
of inter-element boundary integrals appearing in the weak formulation is required. The latter leads to the definition of a 
numerical trace or numerical flux (in the spirit of finite volume schemes). These DGTD methods are possibly high order and 
are flexible enough to deal with heterogeneous media and complex geometries. They are especially well-suited to parallel 
computations for reducing the computational time when simulating three-dimensional problems. DGTD methods for solving 
the system of time-domain Maxwell’s equations have been extensively studied in the last 10 years, following the seminal 
work of Hesthaven and Warburton [17]. In a more recent work, Li and Hesthaven [18] develop a nodal DGTD method 
for solving the time-domain Maxwell’s equations when metamaterials are involved. The development of DGDT methods in 
the nanophotonic area is still limited but one can notice a growing interest in this direction (see e.g. [19–21]). All these 
studies adopt a diffusive DGTD formulation based on upwind numerical fluxes. Besides, several studies have already been 
conducted regarding the development of DGTD methods for dispersive media such as [22–24]. Furthermore one can find 
more studies focused on numerical analysis aspects concerning dispersive media [25,26]. In the framework of non-dissipative 
formulations [27], a DGTD method able to treat local dispersive models for metallic structures has recently been designed 
and studied in [28].

1 In the absence of a specific adaptation of the original FDTD formulation allowing the use of a body-fitted cartesian grid.
2 The term non-conforming meshes is used by means of meshes with hanging nodes.
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1.3. Objectives of this study and related works

A vast majority of the studies concerned with the numerical modeling of the linearized fluid model that governs the 
non-local dispersion behavior of metals, are devoted to frequency domain approaches (see e.g. [29–32] and references 
therein) in a Finite Difference or Finite Element framework. The present work is concerned with the design and numerical 
study of a DGTD method for the non-local model in time-domain. The problem statement in the three-dimensional (3D) case 
and the corresponding initial and boundary value problem are described in section 2. As in [27,28,24], the proposed DGTD 
formulation combines a centered numerical flux with a second order leap-frog time integration scheme. This is detailed in 
section 3. From the theoretical viewpoint, we conduct a stability analysis of the resulting DGTD method and show that the 
method is stable under a CFL condition. Finally, this DGTD method is implemented in the two-dimensional (2D) case for the 
transverse electric mode formulation of Maxwell’s equations and some validation test problems are presented. This is the 
subject of section 4.

2. Problem statement and notations

This section introduces the underlying physics and models this work is based on. Beginning with Maxwell’s macroscopic 
equations for electrodynamics we subsequently present the linearized non-local dispersion model which is appropriate for 
a certain dimensional range of nanophotonic devices where non-local effects in terms of electron interactions have to be 
taken into account. If those dimensions become even smaller down to a level where the quantum mechanics (QM) behavior 
of electrons, i.e. tunneling through regions that are classically forbidden occur, even semi-classical non-local models are not 
sufficient anymore and full QM descriptions are required [14,13]. In this work, we will not consider dimensions where the 
latter descriptions are necessary and though stick to effects that can be appropriately modeled with a so called non-local 
hydrodynamic fluid model with hard-wall boundary conditions [8].

As this work is mainly concerned with non-local dispersion models, the local dispersion effects are kept shortly while 
focusing on the physics which cause the non-local dispersion of metals in a frequency regime around and beyond a charac-
teristic frequency called plasma frequency. Then, the hydrodynamic modeling that governs the electron coupling is presented 
and we derive the linearized fluid model from a general non-linear hydrodynamic model. Maxwell’s equations together with 
the latter mentioned linearized fluid model lead to a new system of Partial Differential Equations (PDEs). In order to char-
acterize this PDE system, we show its hyperbolicity and analyze the energy evolution in time. As the numerical treatment 
is here restricted to the 2D case (in the sense of a 3D problem with an invariance in one given direction), it appears that 
non-local effects do only occur in the so called Transverse Electric (TE) mode and thus the Transverse Magnetic (TM) mode 
can be left out [33]. This section closes with a proper definition of the here considered boundary value problem and a com-
parison of the local and non-local models. Additionally, a rescaled form of the model problem is derived for the purpose of 
the implementation.

2.1. The system of Maxwell’s equations

The complete set of macroscopic Maxwell’s equations describing the spatio-temporal evolution of electromagnetic waves 
is given in differential form by (see for example [34])

∇ × E = −∂tB, ∇ × H = ∂tD + J, (1a)

∇ · D = ρ, ∇ · B = 0, (1b)

with r ∈ R
3, t ∈ R

+ , E, D, H, B, J : R3 × R �→ R
3 and ρ : R3 × R �→ R; where ∇ × A, and ∇ · A respectively denote the curl

and the div operator applied to a vector field A. Here, E and H represent the electric and magnetic field, respectively. The 
magnetic flux density is denoted by B and the electric displacement and current density respectively by D and J, and the 
charge density by ρ . These equations are supplemented by material laws linking D to E and B to H through the introduction 
of

D = ε0E + P, B = μ0H + M. (2)

Here, ε0 and μ0 are the vacuum permittivity and permeability, P : R3 × R �→ R
3 the polarization and M : R3 × R �→ R

3

the magnetization. Throughout the following derivations non-magnetic dispersive materials will be assumed because all 
concepts are applied to non-magnetic metallic structures. The magnetic polarization will thus be considered to be zero. 
Furthermore, the polarization P can be split into different contributing parts. Since metals consist of a rigid ion grid that is 
built of positive ion cores together with the locally fixed bound electrons (d-band) and the freely moving valence electrons 
(s-band), the polarization can be split in two parts: the background polarization P∞ [35] governing the influence of the 
background electrons and P f which models the currents in the free electron gas.

2.2. Nanoplasmonics

Resonant nanoparticles are of increasing importance for their foreseen applications in science and technology. Their 
optical response can only be correctly understood if plasmonic effects are taken into account. This is justified by the range of 
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the electromagnetic skin depth being of the particle’s size. The electromagnetic fields penetrate in noble metals up to 25 nm 
whatever the wavelength. This skin depth gives a typical size for which the plasmonics nature of metallic structures has to 
be considered to understand their properties. Metallic regions actually contain a plasma, whose electromagnetic response 
is in opposition to the incoming field. This is usually described by a negative permittivity in a local recoil approximation. 
When the size of a metallic structure gets down to the scale of the skin depth, the fields can completely penetrate the 
particle and excite resonant oscillations [36]. Even further down, if typical dimensions reach regions where electrons can 
show their full quantum nature like for sub-nanometer gaps between two metallic walls [37], the hydrodynamic model 
which is used in this work is not applicable anymore and QM wave functions have to be completely taken into account. 
As a rule of thumb and often mentioned in the literature [37], plasmonic effects for nanostructures should be taken into 
account when considered dimensions are in the range of ≈1 nm–15 nm, while the incident field wavelength is usually 
comparatively large and considered as a plane wave [30].

2.3. Hydrodynamic modeling of the electron response

A comprehensive discussion on local dispersion models for metals in nanophotonics is given in [38]. The assumption 
of an ideal free electron gas on which these models rely, faces its limits when it comes to even smaller geometries with 
dimensions below tenth of nanometers [31,37]. A cube with an edge length of 10 nm, for instance, would hit the critical 
regime. But also two thick nanowires being placed narrowly with a gap size in the range of ≈1 nm–5 nm would show a 
different behavior if electron interactions were considered. Among others, QM codes are available that take the full wave 
character of electrons into account. Although these solvers provide a very accurate model of the underlying physics, the 
computational effort is so heavy that it makes the simulation of realistic geometries unaffordable.

Various approaches with the purpose of describing the non-local response can be found in the literature e.g. [39]. Within 
this work the focus is put on a linearized non-local model in terms of an electron fluid moving against a positive ion 
background similar to the one fluid description for plasmas [40]. This approach includes inter-electron coupling modeled by 
a hydrodynamic pressure (Coulomb interactions in a Fermi gas) [41]. As an interesting fact it turns out that starting from 
the hydrodynamic model, linearizing, and finally neglecting the non-local impact, the resulting polarization is equivalently 
described as the local Drude model.

2.3.1. The linearized fluid model
Given the electron charge −e, its mass me and a damping constant γ , the hydrodynamic model reads:

me(∂t + v · ∇)v = −e[E + v × B] − meγ v − ∇
(

δg[n]
δn

)
, (3a)

together with the continuity equation

0 = ∂tn + ∇ · (nv), (3b)

where v :R3 ×R �→R
3 represents the fluid velocity, n :R3 ×R �→ R its density and −e[E + v × B] is the Lorentz force. The 

last term of the right hand side of (3a) is a quantum pressure term. It is governed by a function of the density denoted g , 
see e.g. [42]. It allows for different models for the electron interactions. Thus, this term has to be considered carefully in 
order to correctly include the underlying physics. We do not consider the whole non-linear problem as in [43] but linearize 
the equations around an equilibrium state with zero velocity, no static magnetic field, and constant density denoted n0 . We 
follow [29] and consider the same expression for the quantum pressure. The first order linearized term thus expresses as

β2 1

n0
∇n, (4)

for the quantum pressure. β is the quantum related parameter that has to be fixed according to the physics of the problem. 
Its choice is a crucial point in this model. For the moment, this parameter is left arbitrarily even though it is fairly often set 
to 

√
3/5v F using the Fermi velocity v F [42,5]. Thus for (3a), the linearized equation writes

me∂tv = −eE − meγ v − meβ
2 1

n0
∇n, (5)

and for (3b)

∂tn = −n0∇ · v. (6)

Differentiating (5) with respect to the time t , inserting (6) and using J = −n0ev, the current density of the unbound electrons 
in the fluid yield formally

0 = ∂tt J + γ ∂t J − β2∇(∇ · J) − ω2
pε0∂tE. (7)

Together with Maxwell’s equations, the nature of the resulting system of equations is different from a classical local Drude 
model. While the polarization current was simply described by an ODE (Ordinary Differential Equation) in a local Drude 
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model see [38], the non-local linearized hydrodynamical model requires the additional solution of a PDE (7). For the rest of 
this work, we will stick to this formulation.

2.3.2. Hyperbolicity of the linearized non-local model
Given a description of the polarization of bound and free electrons, the entire considered physics is modeled by Maxwell’s 

equations for the electrodynamic contribution, the remaining background polarization P∞ for the bound electrons, and the 
Linearized Fluid (LF) model for the free electron gas. This total system of PDE reads

∇ × H = ∂tD,

∇ × E = −μ0∂tH,

∂tD = ε0ε∞∂tE + J,

(8a)

ω2
pε0∂tE = ∂tt J + γ ∂t J − β2∇(∇ · J), (8b)

where all currents are considered as a charge displacement in terms of polarization. We propose to introduce an auxiliary 
scalar quantity Q in order to transform (8) to a mixed first order PDE system

μ0∂tH + ∇ × E = 0,

ε0ε∞∂tE − ∇ × H = −J,

∂t J − β2∇ Q = ω2
pε0E − γ J,

∂t Q − ∇ · J = 0,

(9)

that can be recast in a conservative form

∂tLu + ∇ · F(u) = 0, with u = (
E H J Q

)T
. (10)

Q is a scalar field and indeed represents the charge density. (10) is a hyperbolic system of PDEs with eigenvalues given 
∀ξ ∈R

3 with ξ = (ξ1, ξ2, ξ3)
T ,

λ(‖ ξ ‖) = {
0 0 0 0 −c ‖ ξ ‖ −c ‖ ξ ‖ c ‖ ξ ‖ c ‖ ξ ‖ −β ‖ ξ ‖ β ‖ ξ ‖} , (11)

with the speed of light c = 1/
√

μ0ε0ε∞ (see [33] for more details on the derivation). Since the underlying physics of the 
non-local contribution are hidden in the quantum related parameter β , it is kind of straightforward that the eigenvalues 
depend on β . Analogous to the electrodynamic case, the two new eigenvalues that depend on β can be interpreted as the 
speed of hydrodynamic waves. Those waves are the propagating bulk plasmons that occur due to non-locality.

2.4. Interface and boundary conditions

Considering the propagation problem (9) on a domain 
, one has to complement the system of PDEs with boundary 
and initial conditions. For the Maxwell part, one would propose standard boundary conditions depending on the considered 
test case (e.g. Perfectly Electrical Conductor (PEC), Silver Müller, etc.). These conditions on E and H only would be adequate 
for a local dispersion model where no bulk plasmons can appear. For the non-local dispersion this is not the case anymore 
and bulk plasmons can be excited [31]. This leads to the requirement of an additional boundary condition on J. This is also 
justified by the fact that the equation determining the evolution of the polarization current in (9) is a PDE. As in our work 
the free electrons of a metal are described by a hydrodynamic model and quantum effects like tunneling are left out, it 
is physically reasonable to prohibit that electrons escape while they can freely move inside a metal. Motivated by this, we 
adopt as in Moreau et al. [8] the boundary condition

n · J|∂
 = 0, (12)

for the current density. This condition obtained by physical arguments is indeed compatible with the considered system 
of PDEs. The dual condition Q = 0 on the boundary of the non-local media may also be considered, and all the results 
presented in the following could easily be adapted. In the case of an interface between two different media e.g. one driven 
by a media that is not “non-local” (media 2) and another one driven by (9) (media 1), interface conditions will be applied. 
Classical interface conditions will hold for the Maxwell field. For the non-local current part the interface condition would 
read

n12 · (J2 − J1) = 0 with J2 ≡ 0. (13)

In the following theoretical results we consider 
 as an open bounded and convex domain.
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2.5. Energy principle

An energy principle can be understood as a figure of merit of a physical model as the total energy stored in a physically 
motivated system must never increase. Additionally, preserving this property when it comes to numerical algorithms would 
be a nice feature of the latter. Formally defining the energy as

E :=1

2

{
μ0ω

2
pε0‖H‖2

L2(
)
+ ε∞ε2

0ω
2
p‖E‖2

L2(
)
+ ‖J‖2

L2(
)
+ β2‖Q ‖2

L2(
)

}
, (14)

on the considered time interval, where L2(
) denotes the space of square integrable functions and ‖ · ‖L2(
) its associated 
norm. Equation (14) together with (9) formally leads to

∂tE = −γ ‖J‖2
L2(
)

≤ 0. (15)

Here, where we have assumed that ∂
 is a perfectly electric conducting boundary and that currents vanish outside 
, 
meaning that E × n = 0 and J · n = 0 on ∂
 where n denotes the surface normal pointing outwards of ∂
 . The result 
obtained in (15) shows the strict preservation of the energy ∂tE(t) = 0 for a collision free model and does also drive 
dissipation if collisions (damping) are taken into account.

2.6. Mode splitting in the two-dimensional case

Considering a 2D computational domain in the x, y plane being invariant in the z-direction, all derivatives with respect 
to z vanish. Thus, as detailed in [33], the total solution of (8) can be separated into two independent sets of equations. Each 
set provides a solution where either the electric or magnetic field has only one spatial component and the corresponding 
magnetic or electric field is only polarized in the perpendicular plane, respectively. The system for the so-called TM mode 
has a z polarized electrical field E = Ezez with the corresponding transverse magnetic field H = Hxex + H yey , where eu, u ∈
{x, y, z} are the cartesian basis vectors. Equally, the solution for TE mode shows a magnetic polarization in z direction 
H = Hzez with the corresponding transverse electric field E = Exex + E yey . Easy calculations show the important fact that 
only the TE mode is able to excite a non-local polarization in the 2D case while the TM mode remains totally local. Thus, 
for the purpose of studying non-local effects in 
, it is sufficient to consider the system for the TE mode

∂y Hz = ε0ε∞∂t Ex + J x + J x,

−∂x Hz = ε0ε∞∂t E y + J y + J y,

∂x E y − ∂y Ex = −μ0∂t Hz,

ω2
pε0∂t Ex = ∂tt J x + γ ∂t J x − β2(∂xx J x + ∂xz J z),

ω2
pε0∂t E y = ∂tt J y + γ ∂t J y − β2(∂yx J y + ∂yy J y).

(16)

2.7. Rescaling

We now want to rescale system (9) in order to simplify the equations and to focus on the quantities that change within 
space. Defining the vacuum impedance and speed of light Z0 =

√
μ0
ε0

and c0 = 1√
μ0ε0

and substituting the original quantities 
by

{
H̃, Ẽ, J̃, Q̃ , t̃, β̃2, γ̃ , ω̃p

}
:=

{
Z0H,E, Z0J, c0 Z0 Q , c0t,

β2

c2
0

,
γ

c0
,
ωp

c0

}
, (17)

yields for system (9)

∂t̃H̃ + ∇ × Ẽ = 0,

ε∞∂t̃ Ẽ − ∇ × H̃ = −J̃,

∂t̃ J̃ − β̃2∇ Q̃ = ω̃p
2Ẽ − γ̃ J̃,

∂t̃ Q̃ − ∇ · J̃ = 0.

(18)

This rescaled version of system (9) is not used in the following development of the DGTD scheme, but is has been adopted 
for the actual implementation.
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3. The DGTD scheme

The previous section presented and discussed the physical framework we consider in this work. In this section we 
describe the spatial discretization based on a DG formulation. Since we work within a discontinuous framework, numerical 
fluxes have to be introduced. In this work, we only consider centered fluxes as a first approach. Further extensions to other 
fluxes are possible and will be part of a future work. The obtained semi-discrete system is then time integrated using an 
explicit scheme. A stability analysis is presented for both the semi-discrete and the fully-discrete scheme.

3.1. The discontinuous Galerkin method

The DG method was first proposed in the context of neutron transport problems by Reed and Hill in [44]. In the following 
years, the method has become very popular and has been applied to a vast field of computational physics and engineering 
topics. A very popular example is the field of computational fluid dynamics. Although most publications on DG are journal 
papers, the book of Hesthaven and Warburton [45] gives a comprehensive study of the DG method. Due to their local 
character, DG methods are very flexible in terms of hp-adaptivity and non-conformal grids. Additionally, the associated 
block diagonal mass matrix allows an efficient explicit time integration which would not be directly the case for continuous 
finite element method (FEM) in general. The discontinuity introduced in the approximation induces an increasing amount 
of discrete unknowns, which is an obvious drawback of the method. It can be overcome by exploiting the locality of the 
approach with a parallel implementation strategy. We now want to apply the DG method to system (9). This is done in 
the following steps. Defining a weak formulation, choosing an appropriate space for the basis functions and eventually 
evaluating the resulting integrals. Although the following derivations are done with scalar test functions (as used in the 
implementation), vectorial test functions are used for the subsequent stability analysis. Indeed, the equivalence of both 
formulations is guaranteed and this choice is only made for the sake of clarity.

3.2. Weak formulation

Let us derive the weak formulation of system (9) on which our discretization will be based. We denote by H1(
) the 
space of square integrable functions with gradient in L2(
). We obtain ∀φ ∈ H1(
)3∫




H × ∇φ d3r +
∫

∂


φ(n × H) d2r = ∂t

∫



ε0ε∞Eφ d3r +
∫



Jφ d3r,

∫



E × ∇φ d3r +
∫

∂


φ(n × E) d2r = −∂t

∫



μ0Hφ d3r,

−
∫



β2 Q ∇φ d3r +
∫

∂


β2φQ n d2r = ∂t

∫



Jφ d3r +
∫



γ Jφ d3r −
∫



ε0ω
2
pEφ d3r,

−
∫



J · ∇φ d3r +
∫

∂


φJ · n d2r = ∂t

∫



Q φ d3r.

(19)

Spatial discretization with the DG method requires a special choice of polynomial basis functions. Unlike continuous FEM, 
the basis functions are local on each mesh element. In other words, each finite element, provides a set of basis functions 
that do not overlap with their neighbors. Due to the latter mentioned property, continuity of the fields is not enforced and 
discontinuities at the cell interfaces may arise. The treatment of those discontinuities provides an additional parameter for 
the design of the final algorithm. As we will see later, the discontinuities are important for the surface integrals in (19) and 
are handled by introducing a numerical flux. Depending on the chosen mesh topology, different polynomial basis expansions 
are possible. In our case, a tetrahedral mesh is assumed in combination with Lagrange polynomials. We thus suppose that 
the computational domain 
 can be discretized as a tetrahedral conformal and quasi-uniform mesh as 
 = ⋃

∀i∈N



i, with 

N
 being the set of indices of the mesh elements. We will denote the mesh size by h > 0. Furthermore, for all i ∈N
 , N
i

will denote the set of indices of the neighboring elements of 
i (having a face in common) and siq = 
i ∩
q, ∀q ∈N
i , the 
set of internal faces. We will also classically denote by h > 0 the characteristic mesh parameter. We define the approximation 
space as

V p(
) :=
{

v ∈ L2(
), v|
i
∈ Pp(
i), ∀i ∈ N


}
, (20)

where Pp(
i) is the space of polynomials of maximum degree p ∈ N on 
i . V p(
) is a finite dimensional subspace of 
L2(
). We choose a polynomial basis of V p(
) formed by polynomial functions (φi j)N
×[1,Pi ] , with Pi the number of 
Degrees of Freedom (DoFs) for the i-th element. For any A ∈ (V p)3, we denote by Ai the restriction of A to 
i (analogous 
definition holds for a scalar field of V p ).
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Let us describe the DG method: The discrete weak formulation is expressed locally on each element of the mesh. Then, 
one has to find (E, H, Q , J) ∈ (V p)10, such that for all for all i ∈ N
 , k ∈ �0, Pi �∫


i

Hi × ∇φik d3r +
∫

∂
i

φik(n × H�
i ) d2r = ∂t

∫

i

ε0ε∞Eiφik d3r +
∫

i

Jiφik d3r,

∫

i

Ei × ∇φik d3r +
∫

∂
i

φik(n × E�
i ) d2r = −∂t

∫

i

μ0Hiφik d3r,

−
∫

i

β2 Q i∇φik d3r +
∫

∂
i

β2φik Q �
i n d2r = ∂t

∫

i

Jiφik d3r +
∫

i

γ Jiφik d3r −
∫

i

ε0ω
2
pEiφik d3r,

−
∫

i

Ji · ∇φik d3r +
∫

∂
i

φikJ�i · n d2r = ∂t

∫

i

Q iφik d3r.

(21)

The additional (·)� emphasizes the field values on the boundary ∂
i and will become clearer when the flux matrices are 
evaluated. We want to use this notation because of the field’s discontinuity between two elements. Indeed, the field value 
at the interface is not well defined. Please note that, even though it is not emphasized on the notations (for the sake of 
clarity), all the discrete fields depend on h. The discrete field quantities can be expressed as

A|
i
(t) = Ai(t) :=

3∑
u=1

Pi∑
j=1

Au
ij(t)φi jeu, A ∈ {H,E, J}, (22a)

Q |
i
(t) = Q i(t) :=

Pi∑
j=1

Q ij(t)φi j, (22b)

where u ∈ {1, 2, 3} refers to the spatial variable. The expressions in (22) are polynomial approximations on each cell. Using 
these decompositions, the integral terms of (21) lead to the definition of elementary matrices on a reference element (used 

in the actual implementation). The mass matrix is deduced from integrals of the form 
∫

i

α

3∑
u=1

Pi∑
j=1

Au
ijφi jeuφik d3r, where α

is a generalized material parameter. Rewriting this expression in matrix form we define a vector containing the DoFs of the 
discrete fields by means of Ai ∈R

3Pi with {Ai} j+u·Pi = Au
ij , j ∈ �1, Pi �. This allows to define

(
M

α
i

)u
kj :=

∫

i

αφi jφik d3r, M
α
i = diag

{(
M

α
i

)1
,
(
M

α
i

)2
,
(
M

α
i

)3
}

, ∈R
3Pi×3Pi . (23)

In our case, we furthermore assume that the material parameters are piecewise constant per mesh element. Hence, (23) can 
be rewritten in the following form Mi = α diag

{
(Mi)

1 , (Mi)
2 , (Mi)

3} , ∈R
3Pi×3Pi . While the mass matrix does not involve 

any spatial derivatives, the stiffness matrix carries the inner part of the original differential operators’ weak form. In other 
words, the spatial derivative is split into an inner stiffness and outer flux matrix. For the weak curl operator, the stiffness 
part reads∫


i

Ai × ∇φik d3r =
∫

i

3∑
u=1

Pi∑
j=1

Au
ijφi jeu × ∇φik d3r,

(Si)
u
kj :=

∫

i

φi jeu × ∇φik d3r, Si = diag
{
(Si)

1 , (Si)
2 , (Si)

3
}

∈R
3Pi×3Pi .

Analogously for the grad term∫

i

Q i∇φik d3r =
∫

i

P i∑
j=1

Q ijφi j∇φik d3r =
Pi∑

j=1

Q ij

∫

i

φi j∇φik d3r,

(Gi)
u
kj :=

∫

i

φi j∂uφik d3r, Gi :=
⎛
⎝(Gi)

1

(Gi)
2

(Gi)
3

⎞
⎠ ∈R

3Pi×Pi ,
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with ∂1 = ∂x , ∂2 = ∂y , ∂3 = ∂z , and finally for the div term

∫

i

Ji · ∇φik d3r =
∫

i

3∑
u=1

Pi∑
j=1

J u
i jφi jeu · ∇φik d3r =

3∑
u=1

Pi∑
j=1

J u
i jeu ·

∫

i

φi j∇φik d3r,

(Di)
u
kj :=

∫

i

φi j∂uφik d3r, Di := (
(Di)

1 (Di)
2 (Di)

3
) ∈R

Pi×3Pi .

One of the special but also crucial points for the DG method is the definition of the field quantity at the boundary shared 
with neighboring cells. A centered numerical flux for example, usually have the advantage to exactly preserve the dissipative 
nature of the physical system without any artificial numerical dissipation. It averages the field quantities of the contributing 

elements at the cell interface siq pointing from element i to element q according to A�
i = Ai + Aq

2
. Another possible approach 

is to use an upwind numerical flux analogously to finite volume schemes where the boundary value is defined with respect 
to wave propagation direction. This numerical flux induces artificial numerical dissipation while spurious solutions are 
damped in time and offer less numerical dispersion than a centered numerical fluxe. As a first attempt and first proof of 
principle, for the discretization of (9), we propose to focus on a centered scheme. It furthermore easily couples to leap-frog 
time scheme leading to a fully discrete scheme that preserves energy under certain conditions as shown in the following. 
The important case of upwind fluxes will be part of a future work towards a more comprehensive study of the full three 
dimensional problem (9).

We define the associated notation of the average of a field A on the interface between two neighboring elements i and 

q by means of {A}iq := Ai + Aq

2

∣∣∣∣
siq

. For Ampère’s and Faraday’s laws we obtain

∫
∂
i

φik(n × A�
i ) d2r =

Ni∑
q=1

∫
siq

φik

(
niq × Ai + Aq

2

)
d2r

= 1

2

Ni∑
q=1

∫
siq

⎡
⎢⎣φik

(
niq × Ai

)︸ ︷︷ ︸
self flux

+φik
(
niq × Aq

)︸ ︷︷ ︸
neighbor flux

⎤
⎥⎦ d2r,

(24)

where Ni = card(N
i ) is the number of neighbors of 
i . Similarly as before, we derive the corresponding matrix of the self 
flux (superscript s) and of the neighbor flux (superscript n): for all u ∈ {1, 2, 3}, i ∈N
 , q ∈ �1, Ni �,(

(Fcurl)
s
iq

)u

jk
=
∫
siq

φikφi j
(
niq × eu

)
d2r,

(
(Fcurl)

n
iq

)u

jk
=
∫
siq

φikφqj
(
niq × eu

)
d2r.

The boundary integral for Q has a different structure and leads with the central flux to

∫
∂
i

φik Q �
i n d2r =

Ni∑
q=1

∫
siq

φik

(
Q i + Q q

2

)
niq d2r. (25)

Continuing in the same manner as before yields(
(Fgrad)

s
iq

)
jk

=
∫
siq

φikφi jniq d2r,
(
(Fgrad)

n
iq

)
jk

=
∫
siq

φikφqjniq d2r,

for respectively the self and neighboring fluxes. Evaluating the flux terms for the polarization current leads to

∫
∂
i

φikJ�i · n d2r =
Ni∑

q=1

∫
siq

φik

(
Ji + Jq

2

)
· niq d2r. (26)

Hence, the corresponding matrices read(
(Fdiv)

s
iq

)u

jk
=
∫
siq

φikφi jeuniq d2r,
(
(Fdiv)

n
iq

)u

jk
=
∫
siq

φikφqjeuniq d2r.
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3.3. Semi-discrete stability

In order to study semi-discrete stability, we will exploit the weak formulation with vectorial test functions which reads 
∀i ∈N
 , ∀(φiH, φiE, φiJ, φi Q ) ∈ (V p)10,

ε0ε∞∂t

∫

i

Ei · φiE d3r =
∫

i

Hi · (∇ × φiE) d3r −
Ni∑

q=1

∫
siq

φiE · ({H}iq × niq
)

d2r −
∫

i

Ji · φiE d3r,

μ0∂t

∫

i

Hi · φiH d3r = −
∫

i

Ei · (∇ × φiH) d3r +
Ni∑

q=1

∫
siq

φiH · ({E}iq × niq
)

d2r,

∂t

∫

i

Ji · φiJ d3r = −β2
∫

i

Q i∇ · φiJ d3r + β2
Ni∑

q=1

∫
siq

{Q }iq φiJ · niq d2r + ω2
pε0

∫

i

Ei · φiJ d3r − γ

∫

i

Ji · φiJ d3r,

∂t

∫

i

Q iφi Q d3r = −
∫

i

Ji · ∇φi Q d3r +
Ni∑

q=1

∫
siq

φi Q {J}iq · niq d2r.

Remark. If siq is a part of ∂
, artificial elements can be used as described in [27]. We define the semi-discrete energy on 
each element 
i analogously to the analytical definition in (14) on the considered time interval

Ei := 1

2

[
μ0ω

2
pε0‖Hi‖2

L2(
i)
+ ε∞ε2

0ω
2
p‖Ei‖2

L2(
i)
+ ‖Ji‖2

L2(
i)
+ β2‖Q i‖2

L2(
i)

]
.

The total energy is thus defined as

E(t) =
∑

i∈N


Ei(t). (27)

Differentiating formally in time, we find using the above weak formulation with the appropriate test functions

∂tEi = ω2
pε0

Ni∑
q=1

∫
siq

[
Hi · ({E}iq × niq

)− Ei · ({H}iq × niq
)]

d2r

+ ω2
pε0

∫

i

[Ei · (∇ × Hi) − Hi · (∇ × Ei)] d3r

+ β2
Ni∑

q=1

({Q }iq Ji · niq + Q i {J}iq · niq
)

d2r

− β2
∫

i

∇ · (Q iJi) d3r − γ ‖Ji‖2
L2(
i)

.

Integration by parts of one half of Ei · (∇ ×Hi) and Hi · (∇ ×Ei), respectively, and applying Gauss’ theorem to the last integral 
of the div term yields

∂tEi = 1

2
ω2

pε0

Ni∑
q=1

∫
siq

[
Hi · (Eq × niq

)− Ei · (Hq × niq
)]

d2r

+ β2
Ni∑

q=1

∫
siq

(
Q qJi · niq + Q iJq · niq

)
d2r − γ ‖Ji‖2

L2(
i)
.

(28)

Summing over all elements i and assuming metallic boundary conditions E × n = 0 and J · n = 0 on ∂
, we obtain

∂tE = −γ ‖J‖2
L2(
i)

. (29)
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Thus, the semi-discrete stability is guaranteed and a decrease of the energy is observed for lossy media.3

3.4. Time discretization with the leap-frog scheme

The DG method is used for the spatial discretization and leads to the system of ODEs (21) that one has to time integrate. 
In our case, we will introduce a staggered time grid where the electric field as well as the charge density are allocated 
on the primary grid and the magnetic field as well as the current density on the dual grid, respectively. We consider the 
problem on the time interval �0, T �, with T > 0 and discretize the latter by a uniform subdivision (tn)n∈�0,N �, N ∈ N

∗ of 
size �t . The dual grid is shifted in time by �t

2 with respect to the primary one. This approach was first proposed in the 
context of the FDTD method for Maxwell’s equations in [46] and is also known as leap-frog scheme. Applying a second 
order leap-frog scheme to system (21) and using again vectorial test functions as in subsection 3.3, we obtain the following 
fully discrete scheme: for n ∈ �0, N �, find (En, Hn+ 1

2 , Jn+ 1
2 , Q n) ∈ (V p)10 such that ∀i ∈ N
 , ∀(φiH, φiE, φiJ, φi Q ) ∈ (V p)10,

ε0ε∞
∫

i

En+1
i − En

i

�t
· φiE =

∫

i

H
n+ 1

2
i · (∇ × φiE)

−
Ni∑

q=1

∫
siq

φiE ·
({

Hn+ 1
2

}
iq

× niq

)
−
∫

i

J
n+ 1

2
i · φiE,

(30a)

μ0

∫

i

H
n+ 3

2
i − H

n+ 1
2

i

�t
· φiH = −

∫

i

En+1
i · (∇ × φiH)

+
Ni∑

q=1

∫
siq

φiH ·
({

En+1
}

iq
× niq

)
,

(30b)

∫

i

J
n+ 3

2
i − J

n+ 1
2

i

�t
· φiJ = − β2

∫

i

Q n+1
i ∇ · φiJ + β2

Ni∑
q=1

∫
siq

{
Q n+1

}
iq

φiJ · niq

+ ω2
pε0

∫

i

En+1
i · φiJ − γ

∫

i

J
n+ 3

2
i + J

n+ 1
2

i

2
· φiJ,

(30c)

∫

i

Q n+1
i − Q n

i

�t
φi Q = −

∫

i

J
n+ 1

2
i · ∇φi Q +

Ni∑
q=1

∫
siq

φi Q

{
Jn+ 1

2

}
iq

· niq. (30d)

Taking this fully-discrete scheme as a starting point, we now study its stability.

3.5. Variation of the fully-discrete energy

We study here the evolution in discrete time of a fully discrete energy. We will proceed in a similar way as in the 

semi-discrete case. We first define En+ 1
2

i with some arbitrary coefficients for the energy norm by means of

En+ 1
2

i := 1

2

⎡
⎢⎣a

∫

i

H
n+ 1

2
i · H

n+ 1
2

i + b

∫

i

En+1
i · En

i + c

∫

i

J
n+ 1

2
i · J

n+ 1
2

i + d

∫

i

Q n+1
i · Q n

i

⎤
⎥⎦ . (31)

The introduced coefficients (a, b, c, d) ∈ R
4 will be adapted later in order to obtain the decrease of the discrete energy4

En+ 1
2 =∑

i
En+ 1

2
i .

3 The term lossy refers here to the friction of electrons due to γ .
4 We have let the coefficients (a, b, c, d) as degrees of freedom, since we found interesting to show which choice would make the fully discrete energy 

decrease.
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Let us define an artificial time level for quantities allocated on the dual time grid e.g. H
n+ 1

2
i and H

n+ 3
2

i , as A[n+1]
i :=

A
n+ 3

2
i +A

n+ 1
2

i
2 . Using this definition together with the energy defined in (31), the energy difference between time step n + 3

2

and n + 1
2 , denoted by �En+1

i = En+ 3
2

i − En+ 1
2

i , reads

2�En+1
i = 2a

∫

i

(
H

n+ 3
2

i − H
n+ 1

2
i

)
· H[n+1]

i + b

∫

i

(
En+2

i · En+1
i − En+1

i · En
i

)

+ 2c

∫

i

(
J
n+ 3

2
i − J

n+ 1
2

i

)
· J[n+1]

i + d

∫

i

(
Q n+2

i Q n+1
i − Q n+1

i Q n
i

)
. (32)

We then make an appropriate choice of the test functions at the time level tn+1 and use the equations of (30) at the time 
levels tn+1, tn+ 1

2
and tn+ 3

2
according to (30a) at time tn+ 1

2
and tn+ 3

2
with En+1

i , (30b) at time tn+1 with H[n+1]
i , (30c) at time 

tn+1 with J[n+1]
i , and (30d) at time tn+ 1

2
and tn+ 3

2
with Q n+1

i ; (32) can then be written as

�En+1
i =

∫

i

[
b

�t

ε0ε∞
H[n+1]

i ·
(
∇ × En+1

i

)
− a

�t

μ0
En+1

i ·
(
∇ × H[n+1]

i

)]

+
∑
q∈Vi

∫
siq

[
a
�t

μ0
H[n+1]

i ·
({

En+1
}

iq
× niq

)
− b

�t

ε0ε∞
En+1

i ·
({

H[n+1]}
iq

× niq

)]

−
∫

i

[
c�tβ2 Q n+1

i ∇ · J[n+1]
i + d�tJ[n+1]

i · ∇ Q n+1
i

]

+ �t
∑
q∈Vi

∫
siq

[
cβ2

{
Q n+1

}
iq

J[n+1]
i · niq + d Q n+1

i

{
Jn+1

}
iq

· niq

]

− b
�t

ε0ε∞

∫

i

J[n+1]
i · En+1

i + cω2
pε0�t

∫

i

En+1
i · J[n+1]

i − cγ �t

∫

i

J[n+1]
i · J[n+1]

i .

Here, the set Vi denotes all interfaces of element i by means of Vi = Vint
i ∪ Vext

i (V
int
i ∩ V

ext
i = ∅) where Vint

i contains the inner 
interfaces and Vext

i the interfaces that intersect with the boundary of the computational domain 
. Integrating by parts and 
setting d = cβ2 and b = a

ε0ε∞
μ0

finally leads to

�En+1
i = a

�t

μ0

∑
q∈Vi

∫
siq

[
H[n+1]

i ·
(

En+1
q

2
× niq

)
− En+1

i ·
(

H[n+1]
q

2
× niq

)]

+ cβ2�t
∑
q∈Vi

∫
siq

(
Q n+1

q J[n+1]
i · niq + Q n+1

i J[n+1]
q · niq

)

− a
�t

μ0

∫

i

J[n+1]
i · En+1

i + cω2
pε0�t

∫

i

En+1
i · J[n+1]

i − cγ �t

∫

i

J[n+1]
i · J[n+1]

i .

Choosing the relation between a and c appropriately as a = cμ0ω
2
pε0 and summing over all cells gives the total energy 

difference

En+ 3
2 − En+ 1

2 ≤ −γ �t‖J[n+1]‖2
L2(
)

. (33)

This is indeed a remarkable result because the purely centered DG scheme does not unphysically increase the energy for the 
coupled problem of Maxwell together with the non-local dispersion model. Additionally, the scheme is energy preserving if 
electron collisions are neglected.

3.6. Positivity of the fully-discrete energy

We now want to study the positivity of the fully-discrete energy with the adequate choice for the coefficients as defined 
in 3.5. Thus for each element i ∈ N
 ,
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En+ 1
2

i := 1

2
μ0ω

2
pε0‖H

n+ 1
2

i ‖2
L2(
i)

+ 1

2
ε∞ε2

0ω
2
p

∫

i

En+1
i · En

i + 1

2
‖J

n+ 1
2

i ‖2
L2(
i)

+ 1

2
β2

∫

i

Q n+1
i · Q n

i . (34)

This energy may not be positive due to the terms 
∫

i

En+1
i · En

i and 
1

2
β2

∫

i

Q n+1
i · Q n

i . However, testing (30a) and (30d) with 

En
i and Q n

i , respectively, gives

∫

i

En+1
i · En

i = �t

ε0ε∞

⎡
⎢⎣∫


i

H
n+ 1

2
i · (∇ × En

i ) −
Ni∑

q=1

∫
siq

En
i ·

({
Hn+ 1

2

}
iq

× niq

)
−
∫

i

J
n+ 1

2
i · En

i

⎤
⎥⎦+ ‖En

i ‖2

i

,

∫

i

Q n+1
i Q n

i = �t

⎡
⎢⎣−

∫

i

J
n+ 1

2
i · ∇ Q n

i +
Ni∑

q=1

∫
siq

Q n
i

{
Jn+ 1

2

}
iq

· niq

⎤
⎥⎦+ ‖Q n

i ‖2
L2(
i)

.

We now plug these two expressions into (34). Using classical inverse inequalities [47] together with appropriate Cauchy–
Schwarz inequalities, it can be shown that (we refer to [33] for more details) there exists a positive constant C , independent 
of �t and h, such that ∀i ∈ N


En+ 1
2

i ≥ ‖Hi‖2
L2(
i)

+ ε∞ε2
0ω

2
p‖Ei‖2

L2(
i)
+ ‖Ji‖2

L2(
i)
+ β2‖Q i‖2

L2(
i)

− �tCε0ω
2
p

4h

[
‖Ei‖2

L2(
i)
+ ‖Hi‖2

L2(
i)
+

∑
q∈Vint

i

(
‖Ei‖2

L2(
i)
+ ‖Hq‖2

L2(
q)

)

+
∑

q∈Vext
i

(
‖Ei‖2

L2(
i)
+ ‖Hi‖2

L2(
i)

)
+ 2h

C

(
‖Ei‖2

L2(
i)
+ ‖Ji‖2

L2(
i)

)]

− �tCβ2

4h

[
‖Ji‖2

L2(
i)
+ ‖Q ‖2

L2(
i)
+

∑
q∈Vint

i

(
‖Q i‖2

L2(
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L2(
q)

)
+

+
∑

q∈Vext
i

(
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L2(
i)
+ ‖Ji‖2

L2(
i)

)]
,

where the superscripts for the time level have been omitted for the quantities in the right-hand side to ease the reading. 
Summing over all cells and adjusting C yields

En+ 1
2 ≥

[
1 − C�tε0ω

2
p

h

(
2 + 1

4

)]
‖H‖2

L2(
)

+
[
ε∞ε2

0ω
2
p − 1

2
�tε0ω

2
p − C�tε0ω

2
p

h

(
2 + 1

4

)]
‖E‖2

L2(
)

+
[

1 − 1

2
�tε0ω

2
p − C�tβ2

h

(
2 + 1

4

)]
‖J‖2

L2(
)

+
[

1 − C�t

h

(
2 + 1

4

)]
‖Q ‖2

L2(
)
. (35)

Thus, the discrete energy will be positive definite if all the coefficients in front of the ‖ · ‖
 terms are positive. Inspired by 
this argument, we introduce a stability criterion for the time step �t in the time stepping scheme proposed above.

Proposition 1 (Positivity of the energy). The energy defined by (34) is positive under the following condition

�t

4h
≤ min

{
1

9ω2
pε0C

,
ε0ε∞

2h + 9C
,

1

2hε0ω
2
p + 9β2C

,
1

9C

}
, (36)

where C is a generic constant independent of �t and h.

Proposition 1 is commonly known as a CFL type criterion.
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Table 1
Simulation parameters for the artificial test cavity. Here, a denotes the length of 
the cubic domain 
� , h the mesh size, f the frequency of the TE1,1 mode, and λ
the corresponding wavelength.

a/nm h/nm f /PHz λ/nm

10 0.1,0.05,0.025,0.0125,0.0083 21.21 14.1

4. Numerical results

We now discuss the numerical evaluation of the DGTD scheme presented in the previous sections. We first consider an 
artificial test case in order to validate the computer implementation of the numerical scheme (30), and then present results 
for a more classical problem relevant to nanoplasmonics.

4.1. Implementation

The DGTD method for the non-local dispersion model presented previously has been implemented in a 2D setting for the 
TE Maxwell’s equations. From now on, we will use the notation DGTD-Pp

5 when using polynomial interpolation of degree 
p ∈N. Due to the second order accuracy of the leap-frog time integration scheme, numerical simulations have been limited 
to p ≤ 2. All routines were implemented in Fortran without putting a special effort into performance aspects. Especially, the 
implementation does not provide any parallelization.6 Several test cases have been used in the scope of this work (see [33]
for more details). As a test of the spatial discretization and the functionality of the algorithm, we want to compute the field 
solutions in a cavity that is artificially filled with dispersive metal. After having verified the algorithm’s functionality, we 
stepped further to a more applied and physical test case.

4.2. Dispersive cavity

As a first test case, we consider a cavity which is completely filled with dispersive material. Although this is a rather 
unrealistic test case, it is a simple possibility to test the basic functionalities of the implementation. Our test case is inspired 
by [24] and combines the analytical solutions of the electromagnetic and hydrodynamic quantities of a vacuum filled and 
fully-dispersive cavity, respectively. In order to compensate the actual coupling of both equations, an artificial test current 
density is introduced. The construction of the latter is based on the analytical solution of the homogeneous Maxwell’s 
equations coupled with the non-local dispersion model on a square domain 
� = {(x, y) ∈ [0,a] × [0,a]} for a > 0 given, 
with the PEC boundary condition

n
�
× E = 0 on ∈ ∂
� ×R

+, (37)

and

n
�
· J = 0, on ∈ ∂
� ×R

+, (38)

namely the eigenmodes in a cavity. The resulting formulation of the test case then reads

∇ × E + μ0∂tH = 0, (39a)

∇ × H − ε0∂tE = J − Jart, (39b)

β2∇ Q − ∂t J = γcJ − ε0ω
2
pE − J̃art, (39c)

∇ · J − ∂t Q = 0. (39d)

Jart and J̃art are the artificial currents that have been artificially introduced so that we can derive an exact solution de-
noted as (Eexa, Hexa, Jexa, Q exa). As the actual computational results for this test case are rather unphysical, we focus on 
the convergence behavior of the algorithm. Defining an error norm ‖E − Ea‖2

L2(
)
on the domain 
 by ‖E − Ea‖2

L2(
)
:=∑

i∈N

‖Ei − Eexa‖2

L2(
i)
allows the evaluation of an error between the numerically computed and analytical solution. Fig. 1

illustrates the convergence behavior for the runs corresponding to Table 1. These results show that we obtain a numerical 
convergence of order 1 for the DGTD-P1 scheme and of order 2 for the DGTD-P2 scheme, which corresponds to usual 
convergence rates obtained for DGTD schemes based on a centered flux.

5 We consider the same interpolation degree p on each cell of the mesh.
6 For this first study in 2D, this is not a concern. This will be however the case in 3D and will be the subject of a future work.
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Fig. 1. L2(
)-error for DGTD-P1 and DGTD-P2. The convergence rate is 1 and 2 for DGTD-P1 and DGTD-P2, respectively. Higher polynomial grades are 
not reasonable since a second order time integration scheme is used. The convergence order can be obtained by p = log(h2)/ log(h1)

log(‖E−Ea‖h1

 )/ log(‖E−Ea‖h2


 )
. Here, h1 and 

h2 are two values for h with h2 �= h1.

Fig. 2. Triangular mesh for a 2 nm dispersive nano disk. The dispersive regime requires a very strong refinement with respect to the usual mesh size for 
Maxwell’s equations. This is mainly caused by the comparatively short wavelength of the bulk plasmon.

4.3. Nanodisk

In order to consider a more physical configuration and to demonstrate the impact of non-local dispersion effects, we 
simulate the scattering of a plane wave by an infinitely long wire, i.e. a nanodisk. We have chosen this example in order 
to compare our results in the time domain with the solutions given in [31] (and thus by extension, to [29]). In a first step, 
a numerical discussion on accuracy and computational time with respect to the interpolation degree p is given. Physical 
aspects like the excitation of surface and bulk plasmons are discussed afterwards. In order to guarantee the same experi-
mental setup, we have taken the physical parameters and excitation frequencies from [31] that are summarized in Table 3. 
A sinusoidal modulated gaussian pulse is used for illumination by means of a plane wave. The temporal modulation is 
determined by an incident TE wave that is linearly polarized in x and z direction for E and H, respectively as

{Einc(t),Hinc(t)} ∝ sin(ωc(t − τ ))exp

(
−
(

t − τ

α

)2
)

. (40)

The illumination is consequently oriented in −ey . Table 4 summarizes the chosen parameters for the excitation signal for 
the runs with ωc below and above the plasma frequency. Fig. 2 shows the triangular mesh used in the simulations. It is 
very important to provide a sufficiently small mesh size in the dispersive region due to the small wavelength of the bulk 
plasmons. On the boundary of the domain, we apply an absorbing boundary condition and the incident field is orthogonally 
induced from above. For switching from the local to the non-local model, the parameter β is set from 0 to the value given 
in Table 3. The relative permittivity ε∞ is set to 1 everywhere. Details on the computational parameters are summarized in 
Table 2.

Let us discuss numerical aspects of the implemented DGTD-Pp method with p ∈ {1, 2}. Within this work we limit 
those aspects to visual effects that can be seen in a 2D plot of the computed fields. As a figure of merit, we use the 
absolute value of the discrete Fourier transform of the computed field quantities. Visualizing the transformed fields at 
the frequencies ωc,1 and ωc,2 allows a comparison with frequency domain solutions. Fig. 3 shows the results for P1 and 
P2 interpolation polynomials. Our solutions show a good visual agreement with the mode patterns published in [31] for 
the DGTD-P2 run while the solution for DGTD-P1 is rather blurry. A mesh refinement would improve the quality of the 
DGTD-P1 solution. A computation with the grid in Fig. 2 together with a total integration time of 5 · 10−15 s takes 151 s 
with the DGTD-P1 method. Increasing the polynomial order to 2 leads to a computational time of 945 s. As our code is 
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Table 2
Computational parameters for the simulation run P1 and P2.

# cells # dof (P1;P2) RAM (P1; P2) 
[MB]

CPU runtime 
(P1; P2) [s]

8816 26448; 52896 23; 27 Intel®Xeon®CPU 
E5-1620 v2, 3.70 GHz

151, 945

Fig. 3. Field solutions of a dispersive nanodisk with a radius of 2 nm. The plots show the Fourier transformed time domain solution of |Ex| for the local 
and non-local dispersion model. All computations were done for ωc,2 = 1.1963ωp for DGTD-P1 and DGTD-P2, respectively.

designed for the non-local model, local Drude solution can be obtained by setting β = 0. Thus, computations for the local 
and non-local cases show the same computational time. It may be mentioned that the implementation is neither optimized 
nor parallelized. This will be done for the 3D case in a future work. However, the gain in accuracy for DGTD-P2 is obvious 
even for a rather coarse mesh compared to the wavelength of the bulk plasmon. Further, possible improvements would be 
PML boundary conditions [48] or curvilinear elements [49]. The important influence of curvilinear elements in the context 
of nanophotonic computations has been also demonstrated in [50].

4.3.1. Physical discussion
We now want to have a look on the physical interpretation of the computed results. The following computations were 

all done with the DGTD-P2 method and the same parameters as above. We basically compare the results for the local 
Drude model with the non-local hydrodynamic model. For the angular frequency ωc,1, we would expect small differences 
between both models. As this frequency is below the plasma frequency, only surface plasmons can be excited. Fig. 4 shows 
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Table 3
Physical parameters for the hydrodynamic model. ω1

c and ω2
c are the two central frequencies of the 

excitation signal.

ωp γc β ωc,1/ωp ωc,2/ωp

13.39 · 1015 rad/s 0.1143 · 1015 rad/s 1.1349 · 106 m/s 0.6503 1.1963

Table 4
Simulation parameters of the illuminating field for the runs below and above the plasma frequency. 
Here, the subscript i links αi to the computational run with ωc,i , for i = 1, 2.

Tmax α1 α2 τ1 τ2

5 · 10−15 s 2 · 10−16 s 1 · 10−16 s 1 · 10−17 s 1 · 10−17 s

Fig. 4. Field solutions of a dispersive nanodisk with a radius of 2 nm. The four figures show the Fourier transformed field solutions of |Ex| and |E y | for the 
local and non-local dispersion model. All computations were done with DGTD-P2 at ωc,1.

the Fourier transformed field solutions for the Ex and E y component. Both field patterns have more or less the same shape. 
However, the local model allows a very small penetration that is almost not visible. In contrast, the non-local solution makes 
penetration easier and we can see the strongest penetration in the direction of the incident field polarization. This is fairly 
reasonable since the plasmon gets excited due to the electric field. In other words, the electrons get pushed by the incident 
field. We want to emphasize that the shown field distributions correspond to the absolute value of the discrete Fourier 
transform. What seems to be a quadrupole field is in reality a dipole field.

Let us switch to the second angular frequency ωc,2 that is clearly above the plasma frequency and corresponds to the 
fifth bulk plasmon resonance according to the cross-section calculations in [31]. Fig. 5 shows the obtained field plots. In 
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Fig. 5. Field solutions of a dispersive nanodisk with a radius of 2 nm. The four figures show the Fourier transformed field solutions of |Ex| and |E y | for the 
local and non-local dispersion model. All computations were done with DGTD-P2 at ωc,2.

case of the local approximation, no resonance seems to be excited in the structure. In contrast, the non-local model shows a 
completely different pattern which we interpret as a bulk plasmon resonance. This bulk plasmon is mostly excited where the 
metal surface is perpendicular to the incident electric field polarization. Consequently, the resonance pattern is essentially 
perpendicular to the propagation direction of the incident plane wave.

All these results are thus in accordance with the discussion in [31]. We also observed new resonances in the non-local 
model that do not exist in the local one. Also, similar field patterns of the linear contribution in a non-linear simulation 
have been observed in [43]. The interested reader is also referred to [33] to find a detailed discussion on the central point 
of [31] that we choose not to recall here. As a last remarkable result, we want to have a look at the scattered field due 
to the excited resonances. The most appropriate way to study the resonance behavior of a nanostructure is to evaluate the 
cross section which is a spectral quantity. This will be considered in a subsequent work and we propose here to stick to the 
time-domain viewpoint. Indeed, it is still possible to observe the time evolution of the electromagnetic field at a determined 
point in the computational domain. In our case, the field monitor was placed at the point (x, y) = (0 m, 4.5 · 10−10 m) for 
the Ex component of the electric field. Fig. 6 shows the observed results. The blueshift of the surface plasmonic response 
for the non-local model is clearly observable and thus agrees with discussions in [9] and [31].

5. Conclusions

We have presented the first study of a DGTD method for the numerical solution of a linearized version of a non-linear 
hydrodynamic modeling of the electron gas for metals in the context of nanophotonics. As a matter of fact, the resulting 
coupled problem of Maxwell’s equations together with the non-local dispersion model is still hyperbolic and the total energy 
is either preserved or decreasing if non-elastic collisions are modeled.

The spatial discretization of the coupled system with the DG method leads to a stable semi-discrete scheme. Discretiz-
ing this semi-discrete scheme in time with a second order leap-frog scheme, finally yields a non-dissipative fully-discrete 
formulation which is stable under a CFL type criterion.
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Fig. 6. Ex component of the electric field at the point (x, y) = (0 m, 4.5 · 10−10 m). The excitation signal is almost zero after t = 1 · 10−15 s and only the 
emitted field due to the excited plasmon can be observed. A blueshift of the resonance frequency w.r.t. the local model can be observed for the non-local 
model.

In order to verify our 2D implementation, we first considered a rather unphysical test case that allowed a verification 
of the spatial discretization. After having successfully tested the implementation, we considered an infinitely long nanowire 
as a physical test case. The computed time domain solutions were Fourier transformed and compared to frequency domain 
solutions afterwards. Our results show a good agreement with earlier published articles.

With this code, a first finite element time domain solver for the linearized hydrodynamic model is available permitting 
the illumination of 2D structures with arbitrarily shaped time signals. Although frequency domain solvers are generally able 
to treat arbitrarily shaped time signals, the computational costs increase dramatically for very short pulses and thus time 
domain algorithms are more appropriate. This allows new insights into the behavior of nano particles.

This work provides a first study of this model in the time domain within a DGTD framework and paves the way to 
the realization of more physical test cases and cross disciplinary works. Recent works have shown that many more struc-
tures than previously thought may be sensitive to non-local effects. Some present very complex geometries [51,52] and 
their study would undoubtedly profit from an efficient DGTD treatment. Future work will extend the present results in 
several directions. We will first propose more sophisticated posttreatment tools in a near future. Implementing non-linear 
hydrodynamic approaches that are essential to understand harmonic generation [53] is another direction.

Also, from a more numerical point of view, a 3D implementation, curvilinear elements, parallelization or higher order 
time integration schemes are natural paths for future works.
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