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Decades of work on beam deformation on reflection and especially on lateral shifts have spread the idea that a
reflected beam is larger than the incident beam. However, when the right conditions are met, a beam reflected by a
multilayered resonant structure can be 10% narrower than the incoming beam. Such an easily measurable change
occurs on a very narrow angular range close to a resonance, which can be leveraged to improve the resolution
of sensors based on the detection of surface-plasmon resonances by a factor of 3. We provide theoretical tools
to deal with this effect and a thorough physical discussion that leads to expect similar phenomena to occur for

temporal wave packets and in other domains of physics.
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Detecting an optical resonance classically reduces to send a
beam on a structure and use the amount of light that is reflected
(or transmitted) to accurately determine for which angle or for
which frequency the resonance occurs. The beam is almost
always large enough so that the finite size of the beam has no
influence on the measurement. On the other hand, it is common
knowledge that, when a narrow enough beam is reflected by
a bare interface, the reflected beam can be deformed by the
reflection to the extent that even the basic laws of the specular
reflection do not seem to hold anymore [1,2]. The changes
are thus said to be nonspecular and have been continuously
explored since Newton [3,4]. Especially, the lateral shift of
reflected beams has attracted most of the attention [5—15] after
the pioneering experimental work of Goos and Hanchen [16]
and some theoretical work in the 1970s [17,18]. Nonspecular
lateral shifts can actually be influenced by many physical
phenomena [19-21]. Generally, the study of lateral shifts,
especially large ones which result from the excitation of leaky
modes, leads to the conclusion that, in general, the reflected
beam is always larger than the incoming one. This corresponds
to the commonly shared idea that, in physics, the deformation
of a wave packet by a linear physical phenomenon leads
to a widening and to dispersion. For these reasons, very
little attention has ever been paid to the change in width
undergone by a beam when it is reflected by a multilayered
structure.

Here we show that, for any multilayered structure whose
resonance leads to a reflection dip, the reflected beam can
actually be narrower than the incoming beam because of
a destructive interference between the beam reflected on
the first interface and the resonance. This phenomenon can
be leveraged to push the theoretical resolution limits of
surface-plasmon resonance (SPR) detection [22] as it occurs
on an angular range that is narrower (typically three times)
than the range on which the reflection coefficient varies. We
provide analytic formulas to describe the variation in the
beam width on reflection and a thorough physical analysis
why this change occurs on such a narrow angular range.
Conversely for many nonspecular phenomena that have been
predicted relying on formulas that are valid only for very large
beams [23], hindering their use for any practical application,
the phenomenon we want to monitor occurs for finite realistic
beams. Finally, we underline that the validity of our analysis
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extends to temporal wave packets and other domains of
physics, such as electronics and quantum mechanics.

We introduce first the very general formulas that describe
how a Gaussian beam is shifted and widened or narrowed on
reflection on a multilayered structure [24] whatever the width
of the incoming beam and not just in the large waist limit that
most of the authors, following Artmann [23], consider.

The electric field, in s polarization, of an incoming beam can
be described in terms of its plane-wave expansion, each plane
wave being characterized by a wave-vector o = nksin 6
where 6 is the associated incidence angle and n is the optical
index of the medium. It can thus be written

1 - i
Ei(x,z,w) = o / Ei(a)e" ™ 790 dq, (1)

where y = ,/epk? —a? and where the angular spectral

amplitude is given by

~ w 2 2

E.(a) = e~ Wi /Ma—ap)” 2

i) N 2)

This corresponds to a Gaussian beam with a waist w;, angularly
centered on 6y with og = nkg sin 6y where ky = ZT” Light is
reflected by the structure beginning at z = 0, producing abeam
with an angular spectrum,

E, =r(@E; = p(a)e'"™E;, 3)

where r is the reflection coefficient and p and ¢ are its modulus
and phase, respectively. This formalism of course holds to
describe the H,, field in p polarization.

The lateral shift on reflection is the difference between the
center of the reflected beam and the center of the incoming
beam,

_ [x|E?dx [ x|Ei|*dx
~ JIEPdx  [IEPdx
It is possible to show (see Appendix A) that this shift is

given whatever the beam width and even if the modulus of
the reflection coefficient is not 1 by

[P |EiPda
[ PPEPda

4)

®)
where the " denotes a derivation with respect to «.
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We are interested here in the change in the width of the
beam on reflection [1]. It can be simply defined as a difference
between second-order centered moments, just like the shift is
a difference between first-order moments,

_ J&=8P|EPdx [ x*|Ei|*dx
 [IE Pdx [1E;Pdx

(6)

We underline that, with the above definition of a Gaus-
sian beam, we have [ x%|E;|*dx/ [ |E;|?dx = fw?, clearly
showing how meaningful the second-order moments are. If
the reflected beam can be considered Gaussian with a waist
w,, then we have A = %(wr2 — wiz), but usually the reflected
beam is not rigorously Gaussian. Using the same kind of
demonstration as for the shift, a relatively straightforward
calculation (see Appendix B) yields

A= L3 = po")IEiPde
[ PEPda
. [P Eda [ Ed
[P EPda  [E; 2doe

” 2
+[fp¢|E|doe ] -

J 0 E;Pder

When the width of the incoming beam becomes asymptot-
ically large, its angular spectrum becomes a Dirac distribution
so that the lateral shift tends to a finite limit § — —¢’. This is
Artmann’s [23] formula,

. , 1 do
lim §=0=—¢ =——F—. ®)
w;—00 nko cos 6y d6

In the asymptotic regime, the second and the third terms
of Eq. (7) both vanish. The third term vanishes because 8?2 —
(¢)*. The first term is the only one whose limit is not zero but
instead,

2 _ "
lim A=Ay=2 "2
w;—>00 2,02

9

This very simple formula is the equivalent of Artmann’s
formula for the width of the beam instead of its position. We
underline that only p appears in this formula and that the
quantity o> — pp” plays a central role even outside of the
asymptotic limit as shown in expression (7).

The formula thus predicts that, when p = 1 whatever the
angle, there is simply no change in the reflected beam’s width.
This may sound correct for total internal reflection but is quite
at odds with conventional knowledge [17,18] when the beam
is narrow and when a resonance is excited in the structure. For
a narrow beam, the excitation of a leaky mode, for instance,
is generally expected to lead to a large lateral shift and to a
widening of the reflected beam (see Fig. 1). Our simulations
show that the asymptotic formula is right: In the asymptotic
regime when the beam is very large and when p = 1, there is
absolutely no change in the width of the beam on reflection,
confirming our predictions.

Now, when p presents a minimum because of a resonance,
then the formula predicts that the reflected beam should
be as follows: (i) narrower than the incidence beam at
resonance because p’ = 0 and p” > 0 for a minimum so that
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FIG. 1. Excitation of a leaky mode in a waveguide (e =3,
thickness of 0.285A) surrounded by air using a Gaussian beam
(incidence angle of 33.9°, w = 100A) propagating in a high index
medium (the prism €, = 5). The distance between the prism and the
waveguide is 0.65A. (a) A profile of the reflected beam’s intensity.
(b) A map of the corresponding field intensity [S5X vertically, 2500A
horizontally as for (a)].

0> — p p” < 0 and (ii) wider than the incident beam slightly
off-resonance when p can be considered linear so that p’ is
maximum and p” vanishes which yield A > 0 for a wide
enough beam. And this occurs of course on an angular range
that is much narrower than the dip in the reflection coefficient
itself. This leads to think that at resonance precisely, the
reflected beam is in general narrower than the incoming beam.

In order to better illustrate this phenomenon and to show its
potential, we consider the realistic case of a surface-plasmon
resonance excited in the Kretschman-Raether configuration
at a wavelength of 632.8 nm as illustrated in Fig. 2. We
have used MOOSH [25,26] to simulate the excitation of the
SPR by a Gaussian beam (p polarized) propagating in a
prism (BK7 glass with an index of 1.47) with an incidence
angle larger than the critical angle of the glass-air interface.
A thin gold film (55 nm) is attached to the prism with a
2-nm-thin chromium layer. These parameters are actually
carefully chosen so that the reflection coefficient is not too
low at resonance (Ospr = 45.5°), or the reflected beam would
be too weak to allow for any measurement and to maximize
the effect we are looking for. Figure 2(b) shows the modulus of
the reflection coefficient p as a function of the incidence angle
as well as the quantity A . It is obvious how A, is supposed
to present swift variations. This too is totally at odds with what
one would expect for a narrow incoming beam [17,18] since
the resonance is the actual excitation of a leaky mode supposed
to widen the reflected beam, the surface plasmon.

We compute A as a function in the incoming beam’s width.
The results are shown in Fig. 3 for two different incidence
angles. The first angle corresponds exactly to the resonance
(Bspr = 45.5°), and the other is slightly off-resonance (45.2°).
The absolute widening A is positive off-resonance and
negative at the precise angle of resonance, and the difference
between the two behaviors is striking as shown in Fig. 3(a).
When the incoming beam is very narrow, no difference can be
noticed.
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FIG. 2. (a) Modulus of the magnetic field obtained by simulation
in the case of a surface-plasmon resonance excitation. A gold layer
(55 nm) is deposited on the bottom of a prism. The incoming beam
comes from above with an incidence angle of 45.5° and propagates
inside the prism. The reflected beam interferes locally with the
incoming beam, hence, the fringes. (b) The dotted red line (scale on
the left) represents the modulus of the reflection coefficient whereas
the asymptotic beam width change is represented by a solid blue line
(scale on the right).
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FIG. 3. Absolute (A, top) and relative (E, bottom) beam width
changes on reflection for two different incidence angles: Ospr = 45.5°
(solid blue line) and 45.2° (dotted red line) as a function of the
incoming beam waist (expressed in wavelength units).
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FIG. 4. Reflection coefficient (dotted red line) (scale on the left)
and relative reflected beam width change (solid blue line) (scale on
the right) as a function of the incidence angle for an incoming beam
with a waist of 75\.

However, the absolute widening is not a perfectly relevant
quantity from an experimental point of view. This idea is
very important: If a nonspecular phenomenon can only be
observed for very large beams, then the relative effect will be
so small that detecting it can prove impossible. As the absolute
expansion tends to a limit in the asymptotic regime, the relative
widening defined as the ratio,

- J(x = 8)?|E, > dx [ xX2|E; |2 dx 0
T ( J1E?dx )/( JEiPdx ) 1o

actually tends to 1 whatever the angle. This ratio in the

2
asymptotic limit is %, but w, is generally not well defined

since the reflected beam is distorted. This means that there
is no relative widening in the asymptotic regime, whereas it
is the right quantity to consider if ever we want to measure
such a phenomenon experimentally. That is the reason why
asymptotic formulas, such as Artmann’s or (9) should not fully
be trusted: Sometimes the asymptotic regime is so difficult to
reach that the relative effect (such as the ratio of the lateral
shift over the incident beam’s waist) is negligible.

Now Fig. 3(b) shows the relative widening as a function
of the incoming beam’s waist for the two previously chosen
incidence angles. As can be seen, both tend to one in the
asymptotic regime and are very close when the incoming beam
is very narrow, but a clear behavior difference can still be
seen between the two for an intermediate and surprising low
value of w;, well before the asymptotic regime is reached. The
difference is actually maximum for w; = 75X and represents
a 20% relative change in the reflected beam width for a 0.3°
incidence angle change only.

This significant change is better illustrated in Fig. 4 where
the relative expansion of the reflected beam E is shown as
a function of the incidence angle using the beam width that
maximizes this variation. It allows to better capture the very
narrow angular range on which the beam width variation
occurs. When compared to the change in the reflection
coefficient on the same angular range, this leads to think that,
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FIG. 5. (a) Profiles of the incoming (solid black line) and of the
reflected beam for two incidence angles: Ospgr = 45.5° (yellow, light
gray line) and 45.2° (dotted red line). The profiles are shown with the
same maximum for a better comparison. (b) Modulus of the magnetic
field exactly at resonance (Ospr = 45.5°) when the beam reflected by
the first interface interferes destructively with the light leaking out of
the resonance; size of the map: 160A vertically and 900X horizontally.

although the sensitivity of the method would remain the same,
monitoring the beam width change would allow to reach a
better resolution.

There are two ways this phenomenon can physically be
understood. First, the profile of the reflected beam [27] can
be interpreted as the result of destructive interference between
the beam reflected by the first interface between glass and
air and the field leaking out of the surface plasmon itself. At
resonance, the interference is destructive enough to strongly
reduce the width of the beam. This can be understood better
when considering Fig. 1 in which the reflected beam is clearly
composed of the beam reflected by the first interface and by
the part coming from the leaky mode. The two are easy to
distinguish thanks to the destructive interference taking place
where they overlap. The profile of the beam when exciting the
resonance shown in Fig. 5(a) presents a similar pattern except
that here, given the width of the beam and of the resonance, the
destructive interference is dominant and reduces the overall
width of the reflected beam. Part of the light that leaks out
of the surface plasmon can still be seen as a high intensity
point. Slightly off-resonance, the interference is no longer
destructive so that the leaky mode and the beam reflected by
the first interface add up, leading to a widening of the beam.
Seen this way, the device can be considered as a new kind of
interferometer.
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Finally, the whole phenomenon can be understood from a
spectral point of view. The angular spectrum of the reflected
beam is the angular spectrum of the incident beam times
the reflection coefficient. This allows to understand why the
variation in the width of the reflected beam is the largest when
the spectral width of the beam is roughly one-third of the
spectral width of the resonance. In that case, three domains can
clearly be defined, depending on the incidence angle 6,. For
an incidence angle slightly smaller that the resonance angle,
p is linear and decreasing sharply. The angular spectrum of
the reflected beam is thus narrower than the spectrum of the
incoming beam, and the reflected beam is then spatially larger.
The narrowing of the reflected beam occurs when the incoming
angular spectrum is centered on the resonance because the
central part of the reflected spectrum is thus diminished,
leading to a spectral widening and a spatial narrowing. On
the other side of the resonance, the reflected beam is of course
spatially widened too.

We have thus provided very general tools to deal with
the beam width’s change in reflection on a multilayered
structure and showed that it is a relevant parameter that can
be used to better detect a SPR resonance, eventually opening
a new route to improve the resolution of SPR biosensors. In
that way nonspecular phenomena, which have been widely
studied since Newton [3], could for once find an application.
Furthermore, our paper suggests that monitoring nonspecular
changes outside of the asymptotic regime is a relevant idea.
Asymptotic results are interesting, but as very wide beams are
very often required to reach this regime, the effects may be
extremely difficult to measure. It is high time, now that we
have the numerical tools to deal with realistic finite beams and
complex changes in the reflected and transmitted beams, to
explore thoroughly what could finally appear as a whole new
domain, well beyond the classical nonspecular phenomena as
the Goos-Hanchen or the Imbert-Fedorov [28] lateral shifts.

We underline that the spectral explanation given above is
very general and this resonant narrowing can thus be expected
to occur in other domains of physics, such as for instance in the
case of resonant tunneling in quantum mechanics when a wave
packet is sent on a potential well buried in a barrier [29,30]. In
that case, the part of the wave function that is reflected would
be, if the conditions are correctly chosen, spatially narrower
than the incoming wave function, despite the time that is spent
in the potential well. A physical interpretation is that the beam
reflected by the first barrier is interfering destructively with the
wave function leaking out of the weakly bound state inside the
barrier. In electronics, when a stop-band filter is excited with a
temporal wave packet, the resulting signal can be expected to
be temporally shorter than the incoming signal in the proper
conditions. In all these cases, provided the wave-vector « is
replaced with the pulsation w, the formulas that have been
given above will correctly describe the resonant narrowing of
the temporal wave packet.

APPENDIX A

In this first appendix, we propose a demonstration of
Artmann’s formula in the asymptotic regime, showing that the
formula s valid even if the modulus of the reflection coefficient
changes with the angle of incidence. Even if the formula has
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been quite successfully used in that context, we underline that
all the previous demonstrations of Artmann’s formula have
been performed assuming a reflection coefficient with a unity
modulus. The analytic formulas that are necessary to get to the
end of the proof will be extremely useful in the following.

The incident and reflected beam fields E; and E, can be
expressed whatever the polarization by

1 . .
Ei(x,z,0) = — / E;j(a)e! @ rimol gy, (A1)
2
and

1 - .
E.(x,z,w) = 7 / E, ()@ T7i=oD gy, (A2)

where E;, and E, are the spectral amplitudes, y =

,/euké — a2, ko being the wave number in vacuum, and ¢
(respectively, ) being the permittivity (respectively, perme-
ability) of the upper medium.

The reflection coefficient is defined by
E,
E;
where p = p(«) is the magnitude and ¢ = ¢(«) is the phase
of r.

The lateral displacement of the reflected beam is the
distance between the centers of the incident and the reflected
beams. It can be expressed as

_ [x|E.|*dx [ x|E;|*dx
~ [IEPdx [IEPdx

Applying the Parseval-Plancherel lemma, we can write

r = pei¢ = . (AS)

(A4)

j E, .
/ X|E,2dx = — f £ da, (AS)
21 oo

and by inserting expression (A3), we obtain

fx|E,|2dx -
2
i A
= 2—/(/0/) +ip*¢))|Ei*da
T

i LIE; -«
— —FE; da. A6
2 P do * (A6)

For an incident Gaussian beam the spectral amplitude is

0 L o~
—(pe'®Ep)pe P E;" da
oo

E,’(Ol) — w e—(wz/4)(a—(x0)ze—iax0, (A7)

27

. .. s . E;|?
where x is the position of the beam’s center, given by Lx\EiFdx

J1Ei|?dx
and ag = /€ ko sin 6y, 6y being the angle of incidence of the
beam.
In this particular case, we can notice that
8Ew‘i 5ok . ~ |2

O igr _ il — LUELE AS
o i 2 oda (A8)

so that using an integration by parts, Eq. (A6) yields

1 ~ _XO ~
fx|Er|2dx _ —E/p2¢’|Ei|2da + E/ME,V.
(A9)
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Finally, the lateral displacement is given by the rigorous
formula,

2 47 E 2 do
- f"”f"—l (A10)
[ P?E;|*da

The asymptotic regime is reached when the incident beam is

large enough. The spectral amplitude is then so narrow that p?

and p?¢’ can be considered constant. Another point of view is

to say that the Gaussian function tends towards the Dirac when

w — 400 in the sense of distributions so that the asymptotic
lateral shift is the same whatever the profile of the beam,

lim § = —¢'.

w—> 00

(Al1)

This result is referred to as Artmann’s formula.

APPENDIX B

Here we will find an expression for the variation of the
reflected beam width. Let us consider a centered incident beam
for which f x|E;|*dx = 0. The position of the reflected beam’s
center, denoted as &, is given by Eq. (4). The width of a beam
is given by the square root of its second centered momentum
so that the widening of the reflected beam can be expressed as

_J = 8 E *dx [ x?|E;|*dx

, Bl
J1E, dx J1Eildx ®BD
which can be developed as follows:
_ [x?E Pdx  [8*E,Pdx [ x*|E:|*dx B2)
= JIEPdx  JIEPdx  [IEdx
Applying the Parseval-Plancherel lemma, we get
1 3’E, -
X2 E Pdx = —— E*da, (B3)
27 ) da? T

and by inserting expression (A3), we obtain
27 /x2|E,|2dx
=— / (pp’ +2ipp'¢) +ip’¢" — p*¢™)|E;|*da

9| E;|? L 02E;
- / (oo + i) VB gy — / 2B g
da da?

After some integrations by parts, we can write that

2n / |E, Pdx = / (%" — po')|Ei2dar
.2

+ /p2<%> da. (B5)

On the other hand, the equality,

9%E; - .
21 | X?|Ei)Pdx = — E da (B6)
do?

063808-5



POLLES, MIHAILOVIC, CENTENO, AND MOREAU

can be written

1 92(1E: 12 B2
ZJT/leEi|2dx=_/ _M_ L da.
2 da? do

(B7)
so that we get
- 52
A _ [(0°¢7 = pp"IEiPde [ 0*(5E) da
[ p?EilPda [ p?EilPda
201512 7\ 2
St S (5 de  [SIEPdx o
[IEiPda  [|E;|*da JIE Pdx
For a centered Gaussian beam, Eq. (2) gives
8E,’ : w4 252
% = T(a —ag) k7, (B9)
and
~ 2
J(E; -
(Ba ) _ —w(a — ag)E;’. (B10)
so that
N =2
OF; w? o(E;
/,02<£) da = —f,OZT(Ol—Olo) (Ba )a’a. (B11)

Using integrations by parts, we obtain

~ 2

AE; 2. 1 _

pr — ) da :/pzw_Eizda + —/(pp” +p/2)E,-2dot.
o 4 2

(B12)
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Following a very similar way, we get
=\ 2
OE; w? -
/ — ) da = / —Eizd()l.
do 4

Since f %as(ﬁiz)d(x = 0 for any Gaussian (or finite) beam,
Eq. (B8) becomes

(B13)

i pszzE‘,-zda
[ P*|E;|*da

[ PP + 50" — pp")]| EiPder

A= —
GEERE

[YE’da [ 82|E,|2dx
[IEiPde [|E/dx

That is the result used in the present paper to estimate the
beam width’s variation.

In the asymptotic regime § tends towards —¢’, and the
second and third terms of Eq. (B14) cancel each other so

that
1 2 "
im A=-(2 2.
w—>00 2 p2 0
Since in the asymptotic limit the reflected beam can be
considered as Gaussian, it is relevant to try to link A to a

change in the waist of the reflected beam. A straightforward
calculation shows that the above formula can, in that case, be

(B14)

(B15)
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