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The tools of optimal estimation are applied to the study of subgrid models for large-eddy simulation
of turbulence. The concept of optimal estimator is introduced and its properties are analyzed in the
context of applications to a priori tests of subgrid models. Attention is focused on the Cook and
Riley model in the case of a scalar field in isotropic turbulence. Using DNS data, the relevance of
the � assumption is estimated by computing �i� generalized optimal estimators and �ii� the error
brought by this assumption alone. Optimal estimators are computed for the subgrid variance using
various sets of variables and various techniques �histograms and neural networks�. It is shown that
optimal estimators allow a thorough exploration of models. Neural networks are proved to be
relevant and very efficient in this framework, and further usages are suggested. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2357974�

I. INTRODUCTION

The principle of large eddy simulations �LES� is to solve
the evolution equations only for the large scales of a turbu-
lent flow. Since the large eddies do not contain all the infor-
mation that would be necessary to compute the future of a
given flow,1 the evolution equations for the large eddies are
not closed. It is then a generic problem in any type of LES,
that the unknown terms have to be approximated using
known quantities, i.e. quantities that can be computed di-
rectly using information associated with the resolved field, or
quantities estimated via additional subgrid variables solution
of auxiliary evolution equations �a subgrid turbulent stress
tensor,2 a subgrid probability,3 or a subgrid spectrum,4…�.

The aim of the present paper is to introduce the concept
of optimal estimator as a tool to estimate the minimal error
that a perfect subgrid model based on a given set of known
large scale quantities �the variables of the model� will gen-
erate �the irreducible error�. This optimal estimator strategy
is considered by the authors of the present paper as a very
helpful process in the field of subgrid modeling, since it pro-
vides a way of assessing the relevance of the set of variables
on which a subgrid model will be built, before having to
specify the precise form of the model.

The optimal estimator can be computed numerically if
the true subgrid term is known, that is to say using the results
of a direct numerical simulation �DNS�. It is therefore a con-
cept that is developed in the framework of what is usually
referred to as a priori test of subgrid models. The first sec-
tions of the paper are devoted to presenting the method of
building the optimal estimator using different techniques.
The classical technique relies on histograms, and a new and

promising technique based on neural networks is introduced.
It is pointed out in Sec. VII that neural networks are indeed
particularly relevant and efficient to build the optimal esti-
mator when the number of parameters to be included in the
subgrid model increases. Some classical results in optimal
estimation will also be exposed in the following two sec-
tions.

In the second part of the paper �Secs. IV–VII�, the inter-
est of optimal estimators is illustrated in the particular case
of the subgrid modeling problem for a simple reaction term
depending on a single passive scalar in isotropic homoge-
neous turbulence. The procedure is used to assess the perfor-
mances of the popular Cook and Riley model,5 which uses a
� distribution as a presumed form of the filtered density
function �FDF�.

It is shown how it allows us to distinguish between the
various sources of errors in the model. Once the error
brought by each assumption contained in the model has been
estimated, it is easy to identify at which level improvements
could be made.

We will particularly compare the error associated with
the choice of the � distributions, with the one resulting from
the use of a submodel to estimate the subgrid variance. We
will address the problem of the relevancy of the different
variables which have been used in the literature5,6 to express
the subgrid variance.

II. PROPERTIES OF OPTIMAL ESTIMATORS

The optimal estimator � for a quantity �, from a set � of
quantities �that we will call the variables� and a norm �·�,
minimizes �����−��. Optimal estimators are typically de-
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fined for the L2 norm �quadratic error� and then � minimizes
�����−��2= ������−��2� where �·� is the statistical mean
�also called the expectation�. The quantity ������−��2� is
null if and only if � is a deterministic function of �, so that
������−��2� is generally not null.

A model is a function g��� which aims at approaching �
�and thus ����� as closely as possible. In a recent work1

Langford and Moser firmly asserted that the quadratic error
is the relevant error to consider in LES. This point of view is
here adopted without further discussion and therefore the
quadratic error will be retained throughout the paper as the
relevant criterium for assessing the quality of a subgrid
model. This section surveys and shows some properties of
optimal estimators in relation with the quadratic error.

The quadratic error made by g��� when estimating � is

Eg = ��� − g����2� . �1�

The quadratic error satisfies the following orthogonality
relation �see the proof in Appendix A�

��� − g����2� = ��� − ������2� + ������� − g����2� . �2�

Since the last term in the RHS of Eq. �2� is the expecta-
tion of a positive quantity, it is positive. Thus for any g

��� − g����2� � ��� − ������2� . �3�

This relation means that any subgrid model g, built on the set
of variables �, will lead to quadratic errors larger than the
one made by the conditional expectation �� ���.

We will call the error made by the conditional expecta-
tion the irreducible error made by estimating � using �,
since no model using � as a variables can make a smaller
error. The last term in �2� can be written

������� − g����2� =	 ������ − g����2p���d� . �4�

It is equal to zero only if g���= �� ���. This means that
the conditional expectation is the unique best model.7 For the
quadratic error, the optimal estimator ���� using � as vari-
ables is thus the conditional expectation �� ���.

Let �� be a set of variables that can be computed using
�. The optimal estimator for �� is thus implicitly a function
of �, so that Eq. �3� becomes

��� − �������2� � ��� − ������2� . �5�

The irreducible error associated with �� is then always
greater than the irreducible error associated with �.

The optimal estimators verify another property that is
called the “successive conditioning”

��������� = ����� . �6�

The proof of this property is given in Appendix B. When
considering a given model, it is common to draw a cloud of
points with � on the y axis and g��� on the x axis.5,6 For a
given value a of g���, it is possible to compute the mean of
� for all the points that are close to a. This can be done for
all the values of a and drawn on the figure �i.e., moving
averages�. This is a way of representing �� �g���=a�, which
is a function of a. The successive conditioning of the optimal

estimators means that if g��� is an optimal estimator, then all
the points computed as described should be on the y=x line.

Provided they can be computed, optimal estimators �i�
allow us to know if a given model is far from the optimal
estimator by comparing the error it makes to the irreducible
error; �ii� suggest ways of improving models just by repre-
senting the optimal estimators when this is possible, and �iii�
allow us to compare different sets of variables quantitatively,
by computing the irreducible error for each set.

III. PRACTICAL COMPUTATION OF OPTIMAL
ESTIMATORS

Now that the properties of optimal estimators have been
presented, we will turn to the practical computation of opti-
mal estimators using data: optimal estimation. Optimal
estimation from data in nonparametric frameworks �i.e.,
without prior knowledge of the function to be approximated�
is a wide area of research consisting in designing algorithms,
termed learning algorithms, that use data
��1 ,�1� , . . . , ��n ,�n� to compute approximations fn of the
optimal �, with some nice convergence properties of fn to �
as n→�.

The main usual hypothesis is that the data are indepen-
dent and identically distributed. Various results of Universal
Consistency �UC�, i.e. asymptotic convergence towards the
optimal function in the Lp norm, have been proved for vari-
ous techniques; histogram-rules,8 k nearest neighbors,9 neu-
ral networks,13 Gaussian support vector machines; 10 various
general results using VC-theory include wide families of
methods.11 There is no possible universal convergence rate; a
method is better or worse than another depending on the
distribution of the examples. However, various heuristics for
choosing between various learning-algorithms are well-
known: support vector machines are often efficient for gen-
eralizing from very small samples or when relevant kernels
can be defined, k nearest neighbors only need a metric, his-
tograms are simple and interpretable, neural networks do not
work well in huge �nonsparse� dimensionality but can deal
with very large numbers of examples.

As a consequence, two techniques have been chosen
here, in the framework of the L2 norm �quadratic error� using
large DNS data. The first one is the most intuitive and is
based on the fact that optimal estimators are conditional ex-
pectations. This is the “histogram technique.” The second
one is based on the fact that optimal estimators minimize the
quadratic error. It uses neural networks.

First, a conditional expectation can be approximated by
a piecewise-constant function �a histogram�. The � space
�whose dimension is the number of variables of the model� is
discretized in small cells. Each data point �a value of � and
of � that has been produced by a DNS� belongs to a given
cell of the � space. Let us consider the piecewise-constant
function which associates to each cell the mean of � for all
the data points belonging to the cell. This function is an
approximation of the optimal estimator. When you have �,
you can take as an approximation of �� ���, the value of the
previous function for the cell corresponding to �.

The main difficulty is the choice of the size of the cell. If
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the size is too big, the piecewise-constant function will ob-
viously not be a good approximation of the conditional ex-
pectation. If the size of the cell is too small, too few points
will be contained in each cell and the value associated with
each cell will not be reliable.

In order to overcome this difficulty, one has to divide the
data into two parts. The first one is used for the computation
of the piecewise-constant function. Then the error made by
the piecewise-constant function when estimating � for the
second part of the data will be computed. This error is the
generalization error. The relevant size for the cells is the one
for which the generalization error is minimized. Figure 1
shows the generalization error in function of the number of
cells for a given range.

The optimal estimators can be approached using neural
networks instead of piecewise-constant functions. A neural
network can be seen as a parametric function. For a percep-
tion of a single hidden layer12, this function can be written

g��� = 

j=1

N

Aj tanh�

k=1

N�

Bjk�k + bj� + a , �7�

where N is the number of neurons in the hidden layer, N� is
the number of variables in � and �k is the kth parameter. In
the NN-terminology, the parameters Bjk are called the
weights of the first layer, the Aj are the weights of the second
layer; a and the bj are the thresholds. By adjusting the
weights of a neural network, it is possible to approach almost
any function. Formally, neural networks with one hidden
layer of neurons have the universal approximation property,
i.e., they can approximate any measurable function for the L2

norm, and they have the statistical consistency, i.e., this con-
vergence occurs with probability one when the network is
trained from data if the number of neurons increases
properly13. A typical neural network is represented in Fig. 2.

As shown previously, the data are split into two parts.
Using the first part, the neural network is trained: the
weights are adjusted so that the error made by the neural
network is minimized. This means that the neural network is
a numerical approximation of the optimal estimator. The
learning is made using a backpropagation algorithm.14,12

Then, the generalization error is computed. The gener-
alization error is the quadratic error made by the neural net-
work on the rest of the data �on the data that have not been
used for choosing the weights�. The number of hidden neu-
rons is chosen in order to minimize this generalization error.

Neural networks allow us to compute optimal estimators
for a number of variables which is greater than 3. Let us just
stress that neural networks are usual tools for pattern recog-
nition, estimation of conditional expectations, density
estimation.12 They have been applied in various areas of
physics,15,16 even in fluid mechanics.17 Other forms of statis-
tical learning tools derived from neural networks have also
been experimented, particularly Support Vector
Machines.18,19 We have chosen neural networks because
Support Vector Machines, at least in their most standard
form, do not use the mean square error, and therefore are not
conditional-expectation estimators, whereas standard neural
networks are.13 However, less standard forms of Support
Vector Machines could also be used;20 but SVM are much
slower than neural networks for large data sets such as the
ones we will use further on.

The results obtained using neural networks are presented
in Sec. VII.

IV. FILTERED DENSITY FUNCTIONS

The case of a scalar field c�x� advected by turbulence is
now considered �c�x� representing, for instance, a tempera-
ture or the concentration of a chemical species�. The large
scales of the scalar field are denoted by c̄�x� defined as

c̄�x� =
1

h3	
D�x�

c�x,t�dx�, �8�

where D�x� denotes a cube of edge-length h, centered in x.
The .̄ filter considered here is then a box filter in the physical
space. It is a positive filter: the filtering can be written as a
convolution c̄=G�c of the scalar field by a function

FIG. 1. Typical generalization error versus the number of cells for each
parameter.

FIG. 2. Representation of the neural network used to approximate the opti-
mal estimators in the case where the number of neurons in the hidden layer
is 3 and with two variables only.
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G�x� =
1

h3

i=1

3

H�h

2
− �xi�� �9�

which is positive �see Appendix C�. Here, H is the Heaviside
function. In the Fourier space, the filter corresponds to a
product of the Fourier transform of the scalar fluctuation by

G̃�k� = 

i=1

3

sinc�1

2
kih� . �10�

In this article, the scalar field is bounded: 0�c�x��1. As
already pointed out,5 the large eddies are bounded in the
same way only if G�0 and �G=1.

We now consider quantities that can be written as:

f�c��x� , �11�

where f is a function. It is not specified here, but f�c� repre-
sents a quantity that is important for the simulation and
whose filtered value requires closure: a �simple� chemical
reaction term for example. The quantity f�c��x� only depends
on the filtered density function �FDF� which is defined21 by

ds�C,x� = ��C − c�x����x� . �12�

The link between the FDF and the quantity of interest is the
following relation:21

f�c��x� =	 f�C�ds�C,x�dC �13�

which means that the knowledge of ds �which is sometimes
called the subgrid PDF� allows us to compute f�c� whatever
f is. The FDF is not a statistical quantity; it is defined for a
given realization of the flow and for a given x. Now that this
has been underlined, the space dependence of the FDF will
be omitted in the following: as for f�c� or c̄.

The mean �on the cube D�x� and not in the statistical
sense� of the FDF is its first moment. It is simply equal to c̄
since

	 xds�x�dx =	 x��x − c�dx = c̄ . �14�

The variance of the FDF will be called the subgrid variance

	s
2 =	 �x − c̄�2ds�x�dx = c2 − c̄2. �15�

For a given cube D=D�x�, let us consider the proportion
of the cube which contains a scalar field bounded above by
C. It will be noted as VD�C� and can be written

VD�C� =
1

h3 	 H�C − c�x��dx , �16�

where H is the Heaviside function. We then have the follow-
ing relation:

�VD

�C
=

1

h3 	 �

�C
H�C − c�x��dx

=
1

h3 	 ��C − c�x��dx = ds.

The FDF thus gives information about the distribution of the
values of the scalar field in the cube D�x� since VD�C�
=�−�

C ds�x�dx. Points can be chosen randomly in the cube
D�x�. A histogram made using the values of the scalar at
these points will approach the FDF. This gives a way of
computing the FDF provided that the field is known every-
where in the cube D�x�.

We used data from a pseudospectral DNS with periodic
boundaries. In such a simulation, the evolution equation of
the flow is solved in the Fourier space. The fields of the
velocity and of the scalar are then defined by their first
Fourier modes. For the scalar, this can be written

c�x,y,z� = 

j=−


+




k=−


+




l=−


+


aj,k,le
i�0�jx+ky+lz�, �17�

where �0= 2�
L �L being the size of the simulation domain�

where 
 is the number of modes retained and the ai,j,k coef-
ficients are the amplitudes of the Fourier modes. The fast
Fourier transform �FFT� computes the field at special points
�grid nodes� because �i� there is a mapping between the val-
ues of the fields at the grid nodes and the amplitudes of the
Fourier modes and �ii� Eq. �17� can be factorized, so that the
computation of the field at the grid nodes is easier. But let us
stress the fact that the field is defined everywhere in the
physical space by �17�. It can be computed for an arbitrary x
by summing the contributions of the different modes at this
particular point. This operation is of course very costly com-
pared to a FFT, but it is necessary. We have tried to approxi-
mate the field between the nodes using a simple interpola-
tion, which requires less computation time, but the results are
not satisfactory. The FDF computed using interpolation sub-
stantially differs from the one computed using the rigorous
formula �17�.

The box filter �8� cannot easily be computed in the
physical space. On the contrary, it is simple to perform in the
Fourier space, since the amplitudes of the Fourier modes just
have to be multiplied by a function given by �10�. This is a
rigorous method in the sense that the obtained field exactly
satisfies �8� in the physical space, reflecting the fact that the
field is indeed implicitly defined everywhere in the physical
space when the Fourier modes are known.

The DNS we have performed use a particular injection
method for the scalar field. Periodically in time, large cubes
are chosen randomly in the simulation domain. “Fresh” sca-
lar is injected in these cubes: in half the cubes the field is put
to zero and in the other half it is put to 1. A view of the scalar
field is shown Fig. 3. It has to be stressed that the scalar
fluctuation always satisfies 0�c�1. The characteristics of
the simulations are detailed in Ref. 22.

Figure 4 shows several FDFs with extremely close
means and variances. The cubes have been chosen so that
c̄=0.5±0.01 and 	s

2=0.0055±0.0001.
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V. FDF MODELING

In the framework of LES, the FDF can be estimated
either by solving an equation governing its evolution23,3 or
by using a model for the FDF. The model proposed by Cook
and Riley5 uses a presumed form for the FDFs. It has drawn
much attention and has been the subject of several
studies.6,24 In this model, the main assumption is that the
FDF can be approximated by a � distribution with same
mean and same variance as the real FDFs �i.e., the same first
moments�. The definition of the � distribution is as follows:

��x; c̄,	s
2� =

xa−1�1 − x�b−1

B�a,b�
, �18�

with

B�a,b� =
��a���b�
��a + b�

= 	
0

1

xa−1�1 − x�b−1dx , �19�

��a� being the gamma function of Euler.
In order to have the right mean and variance, a and b

must be chosen so that

a = c̄� c̄�1 − c̄�
	s

2 − 1� and b =
a

c̄
− a .

The presumed form for the FDF can be used in Eq. �13�. This
provides a model for f�c� whatever f is, using c̄ and 	s

2 as
variables. The estimator of f�c� can be written

	 f�x���x; c̄,	s
2�dx . �20�

Since the definition of the variables is crucial for the
optimal estimators, we will pay much attention to the often
implicit choice of the fundamental variables. Here c̄ and 	s

2

are the variables. Hence we will denote �1= �c̄ ,	s
2� this first

set of fundamental variables. The choice of � distributions
will be called the “� assumption.”

The subgrid variance 	s
2 cannot be computed using the

large eddies c̄ only. A submodel is thus necessary so that the
� assumption can be used. Let us denote .̂ a test filter of a
characteristic size twice as big as for .̄. Cook and Riley as-
sume that the subgrid variance is proportional to the quantity


 = c̄2̂ − ĉ̄2.

This estimation is used to approximate the FDF and the
whole model thus provides an estimation of f�c� based on the
variables c̄ and 
 only. We will denote �1= �c̄ ,
� the second
set of variables.

Another submodel has been proposed by Pierce and
Moin.25 They assume that 	s

2 is proportional to the modulus
of the gradient of the filtered scalar, which we will denote as
�c̄= ��ic̄�2. In the following, we will denote �2= �c̄ ,�c̄� the
variables corresponding to this modelization.

VI. VALIDITY OF THE � ASSUMPTION

Our purpose is to know if there is an optimal choice for
the presumed form of the FDF. Of course this optimal choice
depends on the variables � used for the model. The fact that
there is an optimal choice is not obvious. The optimal esti-
mators used in the first part are defined in the case where a
scalar quantity � has to be estimated using �. Here the model
provides a function for each different value of �. No relevant
measure of the error can be defined in this case. But we have
the relation

�f�c���� = �	 f�C�ds�C�dC��� �21�

=	 f�C��ds�C����dC . �22�

This means that �ds ��� is the optimal estimator for the ap-
proximation of the FDF using � since when it is used in Eq.

FIG. 4. Comparisons between a � law �solid line� and several arbitrary
chosen FDFs, of the same mean �c̄=0.5±0.01� and variance �	s

2

=0.0055±0.0001�.

FIG. 3. A view of the scalar field for a 2563 DNS. A recent injection can be
seen, appearing as a white homogeneous zone.
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�13�, the estimator of f�c� which is obtained is the optimal
estimator for f�c� using �. In this particular case the optimal
estimator concept can therefore easily be extended. This
quantity has already been considered in the case where the
variables are c̄ and 	s

2. It has been called the conditional
FDF.26 It is sometimes referred to as the FPDF.27

This optimal estimator can be computed using the fol-
lowing natural method: first, grid nodes are chosen for which
� has a value very close to an arbitrary given one, then the
FDF is computed for each of these nodes, and finally, all the
FDFs are averaged to obtain the optimal estimator.

Let us consider the set of variables �1= �c̄ ,	s
2�, which is

the case when the subgrid variance is known. Comparisons
between beta distributions and the optimal estimators are
shown for three sets of values of the variables in Fig. 5. The
cubes which are selected for the computation of the optimal
estimators are chosen so that c̄=0.5±0.01 and 	s

2

=0.0055±0.0001 for the first comparison, c̄=0.25±0.01 and
	s

2=0.01±0.001 for the second one and c̄=0.1±0.01 and
	s

2=0.01±0.001 for the last one.
The correspondence between the � distributions and the

optimal estimators is excellent. The � distributions can thus
be considered as a very appropriate presumed form for the
FDF, as long as 	s

2 is known. We must point out that this
does not mean that the FDFs are actually � distributions,5 as
shown Fig. 4. We agree5 that the � assumption seems to be
appropriate for any subvolume. We think that a mathematical
property of � distributions could explain these results but we
were not able to find it. Here, the size filter is about four grid
nodes and has been chosen so that all values of c̄, 	s

2 �or 
�
are well represented in the statistical sampling process.

Let us consider the case when the variables of the model
are c̄ and 
. Figure 6 shows examples of FDFs for cubes
which present the same values of c̄ and 
. When compared
to Fig. 4, it is observed that there are much larger differences
between the FDFs. This is due to the fact that for given c̄ and

, different values of 	s

2 are observed. This is what we will
call the subgrid variance dispersion. For a given � the sub-
grid variance dispersion can be quantified by the irreducible
error made when estimating 	s

2 using �. When for instance

this error is small, the subgrid variance of cubes with very
close � values will be very close to �	s

2 ���.
Figure 7 shows that the optimal estimators are compared

to a � distribution whose variance is �	s
2 � c̄ ,
� �the average

of 	s
2 for all the FDFs�. The cubes which are selected for the

computation of the optimal estimators are chosen so that
c̄=0.5±0.01 and 
=0.0125±0.0005 for the first case,
c̄=0.355±0.005 and 
=0.01±0.001 for the second case, and
for the last one c̄=0.1±0.01 and 
=0.001±0.001.

In this case, the � distributions are not very close to the
optimal estimators. This is due to the variance dispersion.
This means that there is a better presumed form when 
 is
used—closer to the optimal estimator. However, this form
would be relevant for �= �c̄ ,
� only.

When choosing a set � with less subgrid variance dis-
persion, the form of the optimal estimator must tend towards
the form of the optimal estimator when 	s

2 is known �when
the dispersion is null�. Hence, we conclude that the � as-
sumption is better when the subgrid variance dispersion is
small.

FIG. 5. Comparisons between �ds�C� � c̄ ,	s
2� and ��C ; c̄ ,	s

2� for �i� c̄=0.5
and 	s

2=0.0055 �ii� c̄=0.25 and 	s
2=0.01 �iii� c̄=0.1 and 	s

2=0.01. FIG. 6. Comparisons between a � law �solid line� and several arbitrary
chosen FDFs, for c̄=0.5±0.01 and 
=0.0125±0.0005.

FIG. 7. Comparisons between �ds�C� � c̄ ,
� and ��C ; c̄ , �	s
2 � c̄ ,
��.
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Now that we have established that, when 	s
2 is unknown,

� distributions are not as clearly appropriate as when the
subgrid variance is known, the question is: Is the error due to
the difference between the optimal estimator of the FDF and
the � distribution a significant one?

Using optimal estimators, it is possible to compute the
supplementary error brought by the � assumption alone for
the estimation of f�c�. This must be done for a given f .

Let us consider the following estimator for f�c� using �:

gf��� =	 f�C���C; c̄,�	s
2����dC . �23�

It is obtained by replacing ds in �13� by a � distribution. The
variance of the � distribution is the optimal estimator of 	s

2

using �. The error made by this estimator can be compared
to the irreducible error made by �f�c� ���. The supplementary
error made by the estimator �23� reflects the fact that � dis-
tributions are not exactly the optimal estimators as shown
Fig. 7 �or Fig. 5 even if the difference is slight�.

We will now present results that have been obtained us-
ing histograms. All the quadratic errors have been normal-
ized by the variance of the quantity which is estimated. This
allows to compare two errors even if the quantity to estimate
is not the same.

The results concerning the estimation of 	s
2 are presented

in Table I concerning the estimation of 	s
2. The irreducible

error that is computed here reflects the subgrid variance dis-
persion. This dispersion is smaller when the variables are c̄
and �c̄ than when the variables are c̄ and 
.

Since the error brought by the � assumption must be
computed for a given f we have chosen to do so for several
� distributions with different means and variances. This is a
very plausible choice.25 The comparison between the optimal
estimators and the estimator gf��� is presented in Table II.
Column one is the error made by the optimal estimators, i.e.,
the irreducible error. Column two is the error made by gf���,
i.e., when using the � assumption.

It can be observed that the supplementary error due to
the � assumption is always much smaller than the irreducible
error. In most cases, it is one order of magnitude smaller.
This confirms the previous results on the optimal estimators
of the FDF.

The fact that the � distributions are not very close to the
optimal estimators of the FDFs has not a measurable inci-
dence on the supplementary error. The latter can often be
neglected and there is no need to search for a more relevant
presumed form for the FDF.

Since the irreducible errors are normalized, they can be
compared. The conclusion is that 	s

2 is a quantity which is
very difficult to estimate. The quantity f�c� is in general
easier to estimate. In addition, the better 	s

2 is estimated us-
ing a set of variables, the better the f�c� are estimated. For a
few variables, the relative relevancy of a set does not depend
on f .

VII. NEURAL NETWORKS

As already underlined,5 the estimation of the subgrid
variance 	s

2 is the main problem in the presumed FDF ap-
proach. Rather complex models have been proposed6 using
dynamic approach and many new variables. Table III shows
the irreducible error for different sets of variables computed
using neural networks. One of these variables �c̄� has often
been neglected in the different models proposed. The results
shown here suggest this is a mistake. On the contrary, the
results show that the dissipation � does not bring much in-
formation about 	s

2.

TABLE I. Normalized quadratic errors for several optimal estimators of 	s
2

�the optimal estimators are computed using the histogram technique�. The
constant 
 is chosen so that the error made by the Cook and Riley estimator
of 	s

2 is minimized.

Estimator Normalized error

�	s
2 � c̄ ,�c̄� 0.215

�	s
2 � c̄ ,
� 0.259

	s
2=

 0.359

TABLE II. Normalized quadratic errors of different estimators for the esti-
mation of f�c�. The mean and the variance of the different f that have been
chosen are specified.

Variables ��� Error of �f�c� ��� Error of gf���

Mean 0.35, variance 0.01

c̄, 	s
2 0.043 0.051

c̄,�c̄ 0.095 0.099

c̄,
 0.136 0.140

Mean 0.15, variance 0.01

c̄, 	s
2 0.031 0.042

c̄,�c̄ 0.055 0.070

c̄,
 0.072 0.091

Mean 0.5, variance 0.01

c̄, 	s
2 0.041 0.063

c̄,�c̄ 0.092 0.107

c̄,
 0.130 0.146

Mean 0.5, variance 0.036

c̄, 	s
2 0.011 0.013

c̄,�c̄ 0.064 0.066

c̄,
 0.079 0.081

TABLE III. Irreducible error linked to different parameter sets. 643 ex-
amples are used for evaluating the weights of the neural networks and
�1283−643� examples are used for estimating the irreducible error.

Variables Irreducible error

c̄ ,
 0.259

c̄ ,�c̄ 0.215

c̄ ,
 ,�c̄ 0.192

c̄ ,
 ,� 0.258


 ,�c̄ ,�ĉ̄ ,�ĉ̄
0.173

c̄ ,
 ,�c̄ ,�ĉ̄ 0.158

c̄ ,
 ,�c̄ ,�ĉ̄
0.152

c̄ ,
 ,�c̄ ,�ĉ̄ ,�ĉ̄
0.137
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In addition, they show that the more variables that are
included in �, the better the estimation of the subgrid quan-
tities with errors much smaller than with usual models.
Neural networks can thus be considered as a new way to-
wards optimal LES in the sense of Langford and Moser.1 We
think that they could be used directly for the modelling of
unknown terms in LES and that they present some advan-
tages: they do not need much data to estimate the conditional
expectations correctly and they can reproduce highly non
linear behaviors. It is possible to take physics directly into
account when choosing the variables �Galilean invariance,1

scale invariance or dimensional analysis arguments�.

VIII. CONCLUSION

In agreement with Langford and Moser,1 we have used
and explored the idea that in the framework of LES, once a
set of variables has been chosen to estimate a given subgrid
term, there is only one optimal estimator. Some of the prop-
erties of optimal estimators that are of interest for LES have
been presented throughout this article. We have shown how
optimal estimators could be computed using simple tech-
niques if the number of variables is small, or neural networks
if the number of variables is greater than 3.

As an illustration, the concept of optimal estimator was
applied to the Cook and Riley subgrid model5 for the scalar
fluctuation, a model which is widely used and whose basis
has already retained much attention in the literature. The
concept of optimal estimator has been extended to the ap-
proximation of FDF and the main conclusion is that the �
assumption is very appropriate. When the error directly as-
sociated with the � assumption for the estimation of a given
quantity is compared with the irreducible error, it is found to
be small. The largest error are associated with the estimation
of the subgrid variance of the scalar fluctuations. That is the
very point on which the Cook and Riley model needs to be
improved.

In the paper we did not attempt to propose any new
practical model for this scalar variance, but we used neural
networks to see how closely the subgrid variance could be
estimated. The error made by the optimal estimator is smaller
when the number of relevant variables is increased.

The optimal estimation technique provides a way of as-
sessing which set of parameters will potentially lead to the
most accurate subgrid model. It does not provide any infor-
mation on how to specify the formulation of the model, but
simply indicates if efforts for building a model with a given
set of parameters are likely to be fruitful.

As the number of retained parameters is increased, it can
become more and more difficult to propose a model formu-
lation on the ground of physical reasoning, and this might
suggest using the optimal estimator directly instead of a
model. Then, neural networks would be used directly, instead
of a modelization. This “NN guided LES” could constitute
an optimal LES as defined by Refs. 1 and 28. We did not
perform such a simulation in the present paper. This could be
the subject of a future study �following the path explored by
Ref. 28�.

This paper is an illustration of the relevance of optimal
estimation techniques for the problem of subgrid modeling
for LES. These techniques allow a thorough exploration of
the behaviors of models in LES indicating the points which
have to be improved in the models.
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APPENDIX A: ORTHOGONALITY RELATION

Let us give a short demonstration of �2�. The quadratic
error made by an estimator g��� can be developed:

��� − g����2� = ��� − ������2� + ������� − g����2�

+ 2��� − ������������ − g����� .

Now, we have to show that the last term is null. It can be
written

2	 �� − ������������ − g����p��,��d�d�

= 2	 ������ − g����p���

��	 �� − ������p�����d��d� .

Since �� ���=��p�� ���d�, the previous quantity is null and
the orthogonality relation holds.

APPENDIX B: SUCCESSIVE CONDITIONING

Let g��� be an estimator of � using �. We will note
p�g���=g� or p�g� the PDF that g���=g. Then we have

���g��� = g�p�g��� = g� =	 �p��,g�d� =	 �p��,�,g�d�d� =	 �p��,����g��� − g�d�d�

=	 �	 �p�����d��p�����g��� − g�d� =	 �����p�����g��� − g�d� .
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And if g���= �� ���, then

�������� = g�p�g� =	 �����p���������� − g�d�

= g	 p���������� − g�d�

= g	 p��,g�d� = gp�g� .

Hence, �� �g���=g�=g, which can be written as

��������� = ����� .

APPENDIX C: FILTERING

The filtering can be written

c̄�r� =	 G�r − x�c�x�dx

or c̄=G�c. Let us assume that we have 0�c�1 and that we
want

0 � c̄ � 1. �C1�

If G�x��0∀x we can write

0 � c̄ � 1̄ .

If G is not positive, the inequality can be false. Thus it is
necessary that G should be positive. In order to have �C1�
verified, G must have the property 1̄=1, which can be writ-
ten �G=1.

Let us now define VD�C�=H�C−c�x��. The physical
meaning of this quantity is not as clear as in the case of the
box filter. Anyway, the FDF is still the derivative of VD. We
can write

VD�a� − VD�b� = H�a − c� − H�b − c� .

If a�b, then H�a−c�x�−H�b−c�x����0. If the filter is posi-
tive, then VD�a��VD�b� and VD is a growing function. If G
is not positive, this is not granted. Since the FDF is the
derivative of VD, it is positive only if the filter is positive.

Finally, we have VD�1�=1̄=�ds, so that the FDF is normal-
ized only if �G=1.

The filters are generally chosen so that �G=1. The pre-
vious arguments show that they should be chosen to be posi-
tive, too. The box filter has been chosen for historical5,6 and
clarity reasons. But it is an invertible filter, whereas the fil-
ters that should be considered in the framework of LES
should be noninvertible.1 All the noninvertible filters that
have been proposed are not positive. We propose here a new
filter that could be more relevant. It is defined by

G�x� = 

i=1

3
2

��
sinc2 x

�
. �C2�

This filter is noninvertible �since the Fourier transform of
sinc2 is a triangle function�, normalized, and positive. We

think that the choice of a particular filter has not much im-
portance while the error made by the estimators is large. For
very small errors, a difference could probably be found be-
tween the error made by the estimators when using an invert-
ible filter and the error when using a noninvertible filter. This
could probably be seen using neural networks when comput-
ing the irreducible error.
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